Extension of a new axiomatic set theory
Izvestiya. Mathematics, Tome 42 (1994) no. 3, pp. 615-619 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new extended axiomatic system of set theory is presented that consists of three perfectly natural axioms. All the axioms of the Zermelo–Fraenkel system, the generalized axiom of choice, and the generalized continuum hypothesis are proved as theorems in the new extended axiomatic set theory. The essence of the axioms in the new extended set theory is explained.
@article{IM2_1994_42_3_a6,
     author = {A. M. Vdovin},
     title = {Extension of a new axiomatic set theory},
     journal = {Izvestiya. Mathematics},
     pages = {615--619},
     year = {1994},
     volume = {42},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a6/}
}
TY  - JOUR
AU  - A. M. Vdovin
TI  - Extension of a new axiomatic set theory
JO  - Izvestiya. Mathematics
PY  - 1994
SP  - 615
EP  - 619
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a6/
LA  - en
ID  - IM2_1994_42_3_a6
ER  - 
%0 Journal Article
%A A. M. Vdovin
%T Extension of a new axiomatic set theory
%J Izvestiya. Mathematics
%D 1994
%P 615-619
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a6/
%G en
%F IM2_1994_42_3_a6
A. M. Vdovin. Extension of a new axiomatic set theory. Izvestiya. Mathematics, Tome 42 (1994) no. 3, pp. 615-619. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a6/

[1] Vdovin A. M., “Osnovy novoi aksiomaticheskoi teorii mnozhestv”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1113–1118 | MR | Zbl

[2] Gilbert D., Bernais P., Osnovaniya matematiki, t. 1,2, Nauka, M., 1979 | MR

[3] Karri X., Osnovaniya matematicheskoi logiki, Mir, M., 1969

[4] Kolmogorov A. N., Dragalin A. G., Matematicheskaya logika. Dopolnitelnye glavy, MGU, M., 1984

[5] Koen P. Dzh., Teoriya mnozhestv i kontinuum-gipoteza, Mir, M., 1969 | MR