Quasistationary trajectories of semilinear dynamical equations of Sobolev type
Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 601-614

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solvability of the Cauchy problem $u(0)=u_0$ for an operator differential equation $L\dot u=M(u)$ is investigated in the case of $L$-boundedness of the operator $M_{u_0}'$ . The results obtained are illustrated on the Cauchy–Dirichlet problem for the Hoff equation and for Oskolkov's system of equations.
@article{IM2_1994_42_3_a5,
     author = {G. A. Sviridyuk},
     title = {Quasistationary trajectories of semilinear dynamical equations of {Sobolev} type},
     journal = {Izvestiya. Mathematics },
     pages = {601--614},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a5/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
TI  - Quasistationary trajectories of semilinear dynamical equations of Sobolev type
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 601
EP  - 614
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a5/
LA  - en
ID  - IM2_1994_42_3_a5
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%T Quasistationary trajectories of semilinear dynamical equations of Sobolev type
%J Izvestiya. Mathematics 
%D 1994
%P 601-614
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a5/
%G en
%F IM2_1994_42_3_a5
G. A. Sviridyuk. Quasistationary trajectories of semilinear dynamical equations of Sobolev type. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 601-614. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a5/