Quasistationary trajectories of semilinear dynamical equations of Sobolev type
Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 601-614.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solvability of the Cauchy problem $u(0)=u_0$ for an operator differential equation $L\dot u=M(u)$ is investigated in the case of $L$-boundedness of the operator $M_{u_0}'$ . The results obtained are illustrated on the Cauchy–Dirichlet problem for the Hoff equation and for Oskolkov's system of equations.
@article{IM2_1994_42_3_a5,
     author = {G. A. Sviridyuk},
     title = {Quasistationary trajectories of semilinear dynamical equations of {Sobolev} type},
     journal = {Izvestiya. Mathematics },
     pages = {601--614},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a5/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
TI  - Quasistationary trajectories of semilinear dynamical equations of Sobolev type
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 601
EP  - 614
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a5/
LA  - en
ID  - IM2_1994_42_3_a5
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%T Quasistationary trajectories of semilinear dynamical equations of Sobolev type
%J Izvestiya. Mathematics 
%D 1994
%P 601-614
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a5/
%G en
%F IM2_1994_42_3_a5
G. A. Sviridyuk. Quasistationary trajectories of semilinear dynamical equations of Sobolev type. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 601-614. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a5/

[1] Sviridyuk G. A., Lineinye sobolevskie uravneniya, Dep. v VINITI No 4625-85, L., 1985, 39 pp.

[2] Sviridyuk G. A., “Mnogoobraziya reshenii odnogo klassa evolyutsionnykh i dinamicheskikh uravnenii”, DAN SSSR, 304:2 (1989), 301–304 | Zbl

[3] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967, 238 pp.

[4] Krein S. G., Chernyshev K. I., Singulyarno vozmuschennye differentsialnye uravneniya v banakhovom prostranstve, Preprint, In-t matematiki SO AN SSSR, Novosibirsk, 1979

[5] Zubova S. P., Chernyshev K. I., “O lineinom differentsialnom uravnenii s fredgolmovym operatorom pri proizvodnoi”, Differents. uravn. i ikh prilozh., 14, Vilnyus, 1976, 21–38 | MR

[6] Coleman B. D., Duffin R. J., Mizel V. J., “Instability, Unigness and Nonexistance Theorems for the Equation $u_t=u_{xx}-u_{xxt}$ on a Strip”, Arch. Rat. Mech. Anal., 19 (1965), 100–116 | DOI | MR | Zbl

[7] Hirsh M. W., “The Dynamical Systems Approach to Differential Equations”, Bull. Amer. Math. Soc., 11:1 (1984), 2–64 | MR

[8] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 368 pp. | MR | Zbl

[9] Sviridyuk G. A., Sukacheva T. G., “Fazovye prostranstva odnogo klassa operatornykh polulineinykh uravnenii tipa Soboleva”, Differents. uravn., 26:2 (1990), 250–258 | MR | Zbl

[10] Sviridyuk G. A., “Mnogoobrazie reshenii odnogo nelineinogo singulyarnogo psevdoparabolicheskogo uravneniya”, DAN SSSR, 289:6 (1986), 1315–1318 | MR

[11] Sviridyuk G. A., Sukacheva T. G., “Bystro-medlennaya dinamika vyazko uprugikh sred”, DAN SSSR, 308:4 (1989), 791–794 | MR

[12] Vainberg M. M., Trenogii V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 527 pp. | MR

[13] Sviridyuk G. A., “Zadacha Koshi dlya lineinogo singulyarnogo uravneniya tipa Soboleva”, Differents. uravn., 23:12 (1987), 2169–2171 | MR

[14] Sviridyuk G. A., “Zadacha Koshi dlya lineinykh operatornykh uravnenii tipa Soboleva s nepolozhitelnym operatorom pri proizvodnoi”, Differents. uravn., 23:10 (1987), 1823–1826 | MR | Zbl

[15] Sidorov N. A., Romanova O. A., “O primenenii nekotorykh rezultatov teorii vetvleniya pri reshenii differentsialnykh uravnenii s vyrozhdeniem”, Differents. uravn., 23:4 (1987), 1516–1526 | MR

[16] Sukacheva T. G., Fazovye prostranstva polulineinykh singulyarnykh uravnenii dinamicheskogo tipa, Dep. v VINITI, No 194-V84, Novgorod, 1989, 18

[17] Volmir A. S., Ustoichivost deformiruemykh sistem, Nauka, M., 1967

[18] Egorov Yu. V., Lektsii po uravneniyam s chastnymi proizvodnymi. Dopolnitelnye glavy, MGU, M., 1985 | MR

[19] Oskolkov A. L., “Nachalno-kraevye zadachi dlya uravneniya dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. Matem. in-ta AN SSSR, 179, 1988, 126–164 | MR

[20] Sviridyuk G. A., “Ob odnoi modeli dinamiki neszhimaemoi vyazkouprugoi zhidkosti”, Izv. VUZ. Matematika, 1988, no. 1, 74–79 | MR | Zbl

[21] Sviridyuk G. A., “O mnogoobrazii reshenii odnoi zadachi dinamiki neszhimaemoi vyazkouprugoi zhidkosti”, Differents. uravn., 24:10 (1988), 1846–1848 | MR

[22] Krein S. G., “O funktsionalnykh svoistvakh operatorov vektornogo analiza i gidrodinamiki”, DAN SSSR, 93:6 (1953), 969–972 | MR | Zbl

[23] Sviridyuk G. A., Sukacheva T. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zhurn., 31:5 (1990), 109–119 | MR | Zbl