Quasistationary trajectories of semilinear dynamical equations of Sobolev type
Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 601-614
Voir la notice de l'article provenant de la source Math-Net.Ru
The unique solvability of the Cauchy problem $u(0)=u_0$ for an operator differential equation $L\dot u=M(u)$ is investigated in the case of $L$-boundedness of the operator $M_{u_0}'$ . The results obtained are illustrated on the Cauchy–Dirichlet problem for the Hoff equation and for Oskolkov's system of equations.
@article{IM2_1994_42_3_a5,
author = {G. A. Sviridyuk},
title = {Quasistationary trajectories of semilinear dynamical equations of {Sobolev} type},
journal = {Izvestiya. Mathematics },
pages = {601--614},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a5/}
}
G. A. Sviridyuk. Quasistationary trajectories of semilinear dynamical equations of Sobolev type. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 601-614. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a5/