On~the~basis property of certain polynomial systems in spaces of entire functions of exponential type
Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 587-599
Voir la notice de l'article provenant de la source Math-Net.Ru
A class $A$ of polynomial systems $\{a
_n(z)\}_0^\infty (a_n^{(n)}(z)\equiv 1,$ $\ n\geqslant 0)$ is considered such that each polynomial $a_n(z)$, starting with $a_1(z)$, has together with its derivatives of order up to and including $(n-1)$at least one zero in the closed unit disc. It is shown that each polynomial system of the class $A$ forms a quasipower basis in the space of entire functions of exponential type less than $R$ $(R>0)$, provided $R$ does not exceed a certain absolute constant $\sigma(A)\in (0,41,\quad 0,5]$.
@article{IM2_1994_42_3_a4,
author = {V. A. Oskolkov},
title = {On~the~basis property of certain polynomial systems in spaces of entire functions of exponential type},
journal = {Izvestiya. Mathematics },
pages = {587--599},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a4/}
}
TY - JOUR AU - V. A. Oskolkov TI - On~the~basis property of certain polynomial systems in spaces of entire functions of exponential type JO - Izvestiya. Mathematics PY - 1994 SP - 587 EP - 599 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a4/ LA - en ID - IM2_1994_42_3_a4 ER -
V. A. Oskolkov. On~the~basis property of certain polynomial systems in spaces of entire functions of exponential type. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 587-599. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a4/