On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule
Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 501-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of isomonodromy deformations is used to prove connection formulas for the second Painleve transcendent, which is exponentially decreasing on one side of a turning point and has a Kuzmak–Luke–Whitham decomposition on the other. The phase advance turns out to be equal to $\pi/2$ ($\operatorname{mod}\pi$). These connection formulas lead to the determination of the asymptotics of the eigenvalues for the Sturm–Liouville equation with a cubic nonlinearity.
@article{IM2_1994_42_3_a2,
     author = {M. V. Karasev and A. V. Pereskokov},
     title = {On connection formulas for the second {Painleve} transcendent. {Proof} of the {Miles} conjecture, and a quantization rule},
     journal = {Izvestiya. Mathematics },
     pages = {501--560},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - A. V. Pereskokov
TI  - On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 501
EP  - 560
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/
LA  - en
ID  - IM2_1994_42_3_a2
ER  - 
%0 Journal Article
%A M. V. Karasev
%A A. V. Pereskokov
%T On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule
%J Izvestiya. Mathematics 
%D 1994
%P 501-560
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/
%G en
%F IM2_1994_42_3_a2
M. V. Karasev; A. V. Pereskokov. On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 501-560. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/

[1] Kuzmak G. E., “Asimptoticheskie resheniya nelineinykh differentsialnykh uravnenii vtorogo poryadka s peremennymi koeffitsientami”, Prikl. matematika i mekhanika, 23:3 (1959), 515–526 | MR | Zbl

[2] Luke J. C., “A perturbation method for nonlinear dispersive wave problems”, Proc. Roy. Soc., 292A (1966), 403–412 | MR

[3] Whitham G. B., Linear and nonlinear waves, Wiley-Interscience, New York, 1974 | MR | Zbl

[4] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[5] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR

[6] Dobrokhotov S. Yu., Maslov V. P., “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Sovrem. probl. matematiki, 15, VINITI, M., 1980, 3–94 | MR

[7] Fedoryuk M. V., “Metod VKB dlya nelineinogo uravneniya vtorogo poryadka”, ZhVM i MF, 26:2 (1986), 198–210 | MR

[8] Keller J.B., “Correct Bohr–Sommerfeld quantum conditions for nonseparable systems”, Ann. Phys., 4:2 (1958), 180–188 | DOI | MR | Zbl

[9] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965

[10] Haberman R., “Nonlinear transition layers – the second Painleve transcendent”, Stud. Appl. Math., 57:3 (1977), 247–270 | MR | Zbl

[11] Segur H., Ablowitz M. J., “Asymptotic solutions of nonlinear evolution equations and a Painleve transcendent”, Proc. Joint US–USSR Symposium of Soliton Theory (Kiev, 1979), Physica, 3D, no. 1,2, 1981, 165–184 | MR

[12] Miles J. W., “On the second Painleve transcendent”, Proc. Roy. Soc., 361A (1978), 277–291 | MR

[13] Miles J. W., “The second Painleve transcendent: a nonlinear Airy functions”, Mech. Today, 5 (1980), 297–313 | MR | Zbl

[14] Flaschka H., Newell A. C., “Monodromy and spectrum-preserving deformation, I”, Commun. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl

[15] Its A. R., Novokshenov V. Yu., “The isomonodromic deformation method in the theory of Painleve equation”, Lect. Notes in Math., 1191, Springer, 1986 | MR | Zbl

[16] Ablowitz M. J., Segur H., “Asymptotic solutions of the Korteweg–de Vries equation”, Stud. Appl. Math., 57:1 (1977), 13–44 | MR | Zbl

[17] Miles J. W., “The asymptotic solution of the Korteweg–de Vries equation in the absense of solitons”, Stud. Appl. Math., LX:1 (1979), 59–72 | MR

[18] Giannini J. A., “The role of the second Painleve transcendent in the nonlinear optics”, Phys. Lett. A., 141:8,9 (1989), 417–119 | DOI | MR

[19] Daniels P. G., “Effects of geometrical imperfection at the onset of convection in a shallow twodimentional cavity”, Int. J. Heat Mass Transfer, 25:3 (1982), 337–343 | DOI | Zbl

[20] Karasev M. V., Pereskokov A. V., “Pravilo kvantovaniya dlya uravnenii samosoglasovannogo polya s lokalnoi bystroubyvayuschei nelineinostyu”, TMF, 79:2 (1989), 198–208 | MR

[21] Pereskokov A. V., “Pravilo kvantovaniya dlya nelineinogo uravneniya Shredingera vo vneshnem pole”, Matem. zametki, 44:1 (1988), 149–152 | MR | Zbl

[22] Karasev M. V., Pereskokov A. V., “Quantization rules for self-consistent field equation with local and nonlocal nonlinearities”, Excited polaron states in condensed media, Manchester Univ. Press, 1991, 157–170

[23] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, V 3-kh t. T. 3, Nauka, M., 1967 | MR

[24] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1985 | MR

[25] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, V 2-kh t. T. 2, Fizmatgiz, M., 1963

[26] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[27] Novokshenov V. Yu., “Anzats Butru dlya vtorogo uravneniya Penleve v kompleksnoi ploskosti”, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1229–1251

[28] I. Abramovich, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR

[29] Olver F. W., “General connection formulae for Liouville–Green approximations in complex plane”, Phil. Trans. Roy. Soc. London, 289A:1364 (1978), 501–548 | DOI | MR

[30] Abdullaev A. C., “K teorii vtorogo uravneniya Penleve”, DAN SSSR, 273:5 (1983), 1033–1036 | MR | Zbl

[31] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, V 3-kh t. T. 2, Nauka, M., 1974

[32] Akhiezer N. N., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl