Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1994_42_3_a2, author = {M. V. Karasev and A. V. Pereskokov}, title = {On connection formulas for the second {Painleve} transcendent. {Proof} of the {Miles} conjecture, and a quantization rule}, journal = {Izvestiya. Mathematics }, pages = {501--560}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {1994}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/} }
TY - JOUR AU - M. V. Karasev AU - A. V. Pereskokov TI - On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule JO - Izvestiya. Mathematics PY - 1994 SP - 501 EP - 560 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/ LA - en ID - IM2_1994_42_3_a2 ER -
%0 Journal Article %A M. V. Karasev %A A. V. Pereskokov %T On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule %J Izvestiya. Mathematics %D 1994 %P 501-560 %V 42 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/ %G en %F IM2_1994_42_3_a2
M. V. Karasev; A. V. Pereskokov. On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 501-560. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/
[1] Kuzmak G. E., “Asimptoticheskie resheniya nelineinykh differentsialnykh uravnenii vtorogo poryadka s peremennymi koeffitsientami”, Prikl. matematika i mekhanika, 23:3 (1959), 515–526 | MR | Zbl
[2] Luke J. C., “A perturbation method for nonlinear dispersive wave problems”, Proc. Roy. Soc., 292A (1966), 403–412 | MR
[3] Whitham G. B., Linear and nonlinear waves, Wiley-Interscience, New York, 1974 | MR | Zbl
[4] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR
[5] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR
[6] Dobrokhotov S. Yu., Maslov V. P., “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Sovrem. probl. matematiki, 15, VINITI, M., 1980, 3–94 | MR
[7] Fedoryuk M. V., “Metod VKB dlya nelineinogo uravneniya vtorogo poryadka”, ZhVM i MF, 26:2 (1986), 198–210 | MR
[8] Keller J.B., “Correct Bohr–Sommerfeld quantum conditions for nonseparable systems”, Ann. Phys., 4:2 (1958), 180–188 | DOI | MR | Zbl
[9] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965
[10] Haberman R., “Nonlinear transition layers – the second Painleve transcendent”, Stud. Appl. Math., 57:3 (1977), 247–270 | MR | Zbl
[11] Segur H., Ablowitz M. J., “Asymptotic solutions of nonlinear evolution equations and a Painleve transcendent”, Proc. Joint US–USSR Symposium of Soliton Theory (Kiev, 1979), Physica, 3D, no. 1,2, 1981, 165–184 | MR
[12] Miles J. W., “On the second Painleve transcendent”, Proc. Roy. Soc., 361A (1978), 277–291 | MR
[13] Miles J. W., “The second Painleve transcendent: a nonlinear Airy functions”, Mech. Today, 5 (1980), 297–313 | MR | Zbl
[14] Flaschka H., Newell A. C., “Monodromy and spectrum-preserving deformation, I”, Commun. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[15] Its A. R., Novokshenov V. Yu., “The isomonodromic deformation method in the theory of Painleve equation”, Lect. Notes in Math., 1191, Springer, 1986 | MR | Zbl
[16] Ablowitz M. J., Segur H., “Asymptotic solutions of the Korteweg–de Vries equation”, Stud. Appl. Math., 57:1 (1977), 13–44 | MR | Zbl
[17] Miles J. W., “The asymptotic solution of the Korteweg–de Vries equation in the absense of solitons”, Stud. Appl. Math., LX:1 (1979), 59–72 | MR
[18] Giannini J. A., “The role of the second Painleve transcendent in the nonlinear optics”, Phys. Lett. A., 141:8,9 (1989), 417–119 | DOI | MR
[19] Daniels P. G., “Effects of geometrical imperfection at the onset of convection in a shallow twodimentional cavity”, Int. J. Heat Mass Transfer, 25:3 (1982), 337–343 | DOI | Zbl
[20] Karasev M. V., Pereskokov A. V., “Pravilo kvantovaniya dlya uravnenii samosoglasovannogo polya s lokalnoi bystroubyvayuschei nelineinostyu”, TMF, 79:2 (1989), 198–208 | MR
[21] Pereskokov A. V., “Pravilo kvantovaniya dlya nelineinogo uravneniya Shredingera vo vneshnem pole”, Matem. zametki, 44:1 (1988), 149–152 | MR | Zbl
[22] Karasev M. V., Pereskokov A. V., “Quantization rules for self-consistent field equation with local and nonlocal nonlinearities”, Excited polaron states in condensed media, Manchester Univ. Press, 1991, 157–170
[23] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, V 3-kh t. T. 3, Nauka, M., 1967 | MR
[24] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1985 | MR
[25] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, V 2-kh t. T. 2, Fizmatgiz, M., 1963
[26] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl
[27] Novokshenov V. Yu., “Anzats Butru dlya vtorogo uravneniya Penleve v kompleksnoi ploskosti”, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1229–1251
[28] I. Abramovich, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR
[29] Olver F. W., “General connection formulae for Liouville–Green approximations in complex plane”, Phil. Trans. Roy. Soc. London, 289A:1364 (1978), 501–548 | DOI | MR
[30] Abdullaev A. C., “K teorii vtorogo uravneniya Penleve”, DAN SSSR, 273:5 (1983), 1033–1036 | MR | Zbl
[31] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, V 3-kh t. T. 2, Nauka, M., 1974
[32] Akhiezer N. N., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl