On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule
Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 501-560

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of isomonodromy deformations is used to prove connection formulas for the second Painleve transcendent, which is exponentially decreasing on one side of a turning point and has a Kuzmak–Luke–Whitham decomposition on the other. The phase advance turns out to be equal to $\pi/2$ ($\operatorname{mod}\pi$). These connection formulas lead to the determination of the asymptotics of the eigenvalues for the Sturm–Liouville equation with a cubic nonlinearity.
@article{IM2_1994_42_3_a2,
     author = {M. V. Karasev and A. V. Pereskokov},
     title = {On connection formulas for the second {Painleve} transcendent. {Proof} of the {Miles} conjecture, and a quantization rule},
     journal = {Izvestiya. Mathematics },
     pages = {501--560},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - A. V. Pereskokov
TI  - On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 501
EP  - 560
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/
LA  - en
ID  - IM2_1994_42_3_a2
ER  - 
%0 Journal Article
%A M. V. Karasev
%A A. V. Pereskokov
%T On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule
%J Izvestiya. Mathematics 
%D 1994
%P 501-560
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/
%G en
%F IM2_1994_42_3_a2
M. V. Karasev; A. V. Pereskokov. On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule. Izvestiya. Mathematics , Tome 42 (1994) no. 3, pp. 501-560. http://geodesic.mathdoc.fr/item/IM2_1994_42_3_a2/