Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1994_42_2_a5, author = {V. V. Shokurov}, title = {Semistable 3-fold flips}, journal = {Izvestiya. Mathematics }, pages = {371--425}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {1994}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a5/} }
V. V. Shokurov. Semistable 3-fold flips. Izvestiya. Mathematics , Tome 42 (1994) no. 2, pp. 371-425. http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a5/
[1] Benveniste X., “Sur le cone des 1-cycles effectifs en dimension 3”, Math. Ann., 272:2 (1985), 257–265 | DOI | MR | Zbl
[2] Brieskorn E., “Die Auflösung der rationalen Singularitäten holomorphen Abbildungen”, Math. Ann., 178 (1968), 255–270 | DOI | MR | Zbl
[3] DaniJov V. I., “The birational geometry of toric 3-folds”, Math. USSR Izv., 21 (1983), 269–279 | DOI
[4] Uiev A. I., “Log-terminal singularities of algebraic surfaces”, Moscow Univ. Bull., 41:3 (1986), 38–44 | MR
[5] Kawamata Y., “Crepant blowing-up of 3-dimensional canonical singularities and its application to the degeneration of surfaces”, Ann. of Math., 127 (1988), 93–163 | DOI | MR | Zbl
[6] Kawamata Y., “Moderate degenerations of algebraic surfaces”, Complex Algebraic Varieties, Lect. Notes in Math., 1507, eds. K. Hulek, T. Peternell, M. Shneider and F.-O. Schreyer, 1992, 113–132 | MR | Zbl
[7] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Algebraic geometry, Proc. Sympos. Algebraic Geom. (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR
[8] Kempf G., Knudsen F., Mumford D. and Saint-Donat B., Toroidal embeddings, I, Lect. Notes in Math., 339, 1973 | MR | Zbl
[9] Kollár J., “Flops”, Nagoya Math. J., 113 (1989), 15–36 | MR | Zbl
[10] Kollär J., “Flips, flops, minimal models etc.”, Surv. in Diff. Geom., 1 (1991), 113–199 | MR
[11] Kollar J., Mori S., Classification of three dimensional flips, Preprint, J. Amer. Math. Soc., Univ. of Utah, 1990 (to appear) , 174 pp. | MR
[12] Kulikov Vik. S., “Vyrozhdeniya K3 poverkhnostei i poverkhnostei Enrikvesa”, Izv. AN SSSR, ser. mat., 41 (1977), 1008–1042 | MR | Zbl
[13] Luo T., On the divisorial extremal contractions of threefolds: divisor to a point, Preprint, 1991
[14] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math., 116 (1982), 133–176 | DOI | MR | Zbl
[15] Mori S., “On 3-dimensional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | MR | Zbl
[16] Nakano S., “On the inverse of monoidal transformation”, Publ. Res. Inst. Math. Sci., 6, 1970/71, 483–502 | MR
[17] Nakayama N., “The lower semi-continuity of the plurigenera of complex varieties”, Algebraic Geom., Proc. Sympos. (Sendai, 1985), Adv. in Pure Math., 10, 1987, 551–590 | MR | Zbl
[18] Nakajama N., Remarks on $\mathbb{Q}$-factorial singularities, Preprint
[19] Persson U., “On degenerations of algebraic surfaces”, Mem. Amer. Math. Soc., 189 (1977) | MR | Zbl
[20] Persson U., Pinkham H., “Degeneration of surfaces with trivial canonical bundle”, Ann. of Math., 113 (1981), 45–66 | DOI | MR | Zbl
[21] Reid M., “Minimal models of canonical 3-folds”, Algebraic Varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, eds. S. Itaka, H. Morikawa, North Holland, Amsterdam, 1983, 131–180 | MR
[22] Reid M., “Young person's guide to canonical singularities”, Proc. Symp. Pure Math., 46:1 (1987), 345–414 | MR | Zbl
[23] Tsunoda S., “Degenerations of surfaces”, Proc. Sympos. Algebraic Geom. (Sendai, 1985), Adv. in Pure Math., 10, 1987, 755–764 | MR | Zbl
[24] Tyurina G. N., “Resolution of singularities of plane deformations of double rational points”, Funct. Anal. Appl., 4:1 (1970), 68–73 | DOI | Zbl
[25] Shokurov V. V., “The nonvanishing theorem”, Izv. Akad. Nauk SSSR Ser. Mat., 49 (1985), 635–651 ; Math. USSR Izv., 26 (1986), 591–604 | MR | DOI | Zbl
[26] Shokurov V. V., “Numerical geometry of algebraic varieties”, Proc. of ICM, 1 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 672–681 | MR
[27] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. AN SSSR, ser. mat., 56 (1992), 105–203 | MR | Zbl