The optimality principle for discrete and differential inclusions of parabolic type with distributed parameters, and duality
Izvestiya. Mathematics , Tome 42 (1994) no. 2, pp. 299-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for optimality are derived for the problems under consideration
@article{IM2_1994_42_2_a2,
     author = {E. N. Makhmudov and B. N. Pshenichnyi},
     title = {The optimality principle for discrete and differential inclusions of parabolic type with distributed parameters, and duality},
     journal = {Izvestiya. Mathematics },
     pages = {299--319},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a2/}
}
TY  - JOUR
AU  - E. N. Makhmudov
AU  - B. N. Pshenichnyi
TI  - The optimality principle for discrete and differential inclusions of parabolic type with distributed parameters, and duality
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 299
EP  - 319
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a2/
LA  - en
ID  - IM2_1994_42_2_a2
ER  - 
%0 Journal Article
%A E. N. Makhmudov
%A B. N. Pshenichnyi
%T The optimality principle for discrete and differential inclusions of parabolic type with distributed parameters, and duality
%J Izvestiya. Mathematics 
%D 1994
%P 299-319
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a2/
%G en
%F IM2_1994_42_2_a2
E. N. Makhmudov; B. N. Pshenichnyi. The optimality principle for discrete and differential inclusions of parabolic type with distributed parameters, and duality. Izvestiya. Mathematics , Tome 42 (1994) no. 2, pp. 299-319. http://geodesic.mathdoc.fr/item/IM2_1994_42_2_a2/

[1] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhniki. Matem. analiz, 19, 1982, 127–230 | MR | Zbl

[2] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR

[3] Boltyanskii Z. G., “Metod shatrov v teorii ekstremalnykh zadach”, UMN, 30:3 (1975), 1–55

[4] Beresnev V. V., “Neobkhodimye usloviya ekstremuma dlya sistem diskretnykh vklyuchenii”, Kibernetika, Kiev, 1977

[5] Makhmudov E. N., “O dvoistvennosti v zadachakh teorii vypuklykh raznostnykh vklyuchenii s posledeistviem”, Differents. uravn., 23:8 (1987), 1315–1324 | MR

[6] Makarov B. L., Rubinov A. M., Matematicheskaya teoriya ekonomicheskoi dinamiki i ravnovesiya, Nauka, M., 1973 | MR

[7] Rubinov A. M., Superlineinye mnogoznachnye otobrazheniya i ikh prilozheniya k ekonomiko-matematicheskim zadacham, Nauka, L., 1980 | MR

[8] Fam Khyu Shak, “Opornyi printsip v diskretnykh protsessakh”, Differents. uravn., 11:8 (1975), 1485–1496 | MR | Zbl

[9] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978 | MR

[10] Sirazetdinov T. K., Optimizatsiya sistem s raspredelennymi parametrami, Nauka, M., 1977 | MR

[11] Lure K., Optimalnoe upravlenie v zadachakh matematicheskoi fiziki, Nauka, M., 1975 | MR

[12] Butkovskii A. G., Teoriya optimalnogo upravleniya sistem s raspredelennymi parametrami, Nauka, M., 1965 | MR | Zbl

[13] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[14] Pshenichnyi B. N., Medvedovskii I. B., “O dvoistvennosti v zadachakh optimalnogo upravleniya protsessami, opisyvaemymi vypuklymi mnogoznachnymi otobrazheniyami”, Kibernetika, no. 3, K., 1977, 105–111

[15] Blagodatskikh V. I., “Dostatochnye usloviya optimalnosti dlya differentsialnykh vklyuchenii”, Izv. AN SSSR. Ser. matem., 38:3 (1974), 615–624 | Zbl

[16] Ioffe A. D., Tikhomirov V. M., “Dvoistvennost v zadachakh variatsionnogo ischisleniya”, DAN SSSR, 180 (1968), 789–792 | MR | Zbl

[17] Mahmudov E. N., “Duality in the problems of optimal control for systems described by convex differential inclusions wiht delay”, Problems of control and Information Theory, 16:6 (1986), 411–422 | MR

[18] Makhmudov E. N., “O dvoistvennosti v zadachakh optimalnogo upravleniya, opisyvaemykh vypuklymi diskretnymi i differentsialnymi vklyucheniyami”, Avtomatika i telemekhanika, 1987, 13–25 | MR | Zbl

[19] Tiba D., “Optimality conditions for distributed control problems with nonlinear state equation”, SIAM J. Contr. and Optim., 23:1 (1985), 85–110 | DOI | MR | Zbl

[20] Barbu Viorel, “The time optimal control of variational inequalites. Dynamic programming and the maximum principle”, Lect. Notes Math., 119, 1975, 1–19 | MR

[21] Barbu Viorel, “A product formula for optimal control of variational inequalites”, SIAM J. Contr. and Optim., 19:1 (1981), 64–86 | DOI | MR | Zbl

[22] He Zheng-Xu., “State constrained control problems governed by variational inequalites SIAM”, J. Contr. and Optim., 25:5 (1987), 1119–1144 | DOI | MR | Zbl

[23] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[24] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[25] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[26] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[27] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1962 | MR