On Maslov regularizability of discontinuous mappings
Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 27-49

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a Maslov regularizing algorithm (MRA) is introduced in this paper for an arbitrary mapping $f\colon D(f)\subset X\to Y$ acting in metric spaces $X$ and $Y$, with domain $D(f)$. A necessary condition and a sufficient condition are given for there to be a continuous MRA for $f$. In the case of a separable Banach space $Y$ the set of such mappings is confined to $B$-measurable mappings of first class defined on $F_{\sigma\delta}$-sets.
@article{IM2_1994_42_1_a1,
     author = {E. N. Domanskii},
     title = {On {Maslov} regularizability of discontinuous mappings},
     journal = {Izvestiya. Mathematics },
     pages = {27--49},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a1/}
}
TY  - JOUR
AU  - E. N. Domanskii
TI  - On Maslov regularizability of discontinuous mappings
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 27
EP  - 49
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a1/
LA  - en
ID  - IM2_1994_42_1_a1
ER  - 
%0 Journal Article
%A E. N. Domanskii
%T On Maslov regularizability of discontinuous mappings
%J Izvestiya. Mathematics 
%D 1994
%P 27-49
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a1/
%G en
%F IM2_1994_42_1_a1
E. N. Domanskii. On Maslov regularizability of discontinuous mappings. Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 27-49. http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a1/