On Maslov regularizability of discontinuous mappings
Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 27-49
Voir la notice de l'article provenant de la source Math-Net.Ru
The concept of a Maslov regularizing algorithm (MRA) is introduced in this paper for an arbitrary mapping $f\colon D(f)\subset X\to Y$ acting in metric spaces $X$ and $Y$, with domain $D(f)$. A necessary condition and a sufficient condition are given for there to be a continuous MRA for $f$. In the case of a separable Banach space $Y$ the set of such mappings is confined to $B$-measurable mappings of first class defined on $F_{\sigma\delta}$-sets.
@article{IM2_1994_42_1_a1,
author = {E. N. Domanskii},
title = {On {Maslov} regularizability of discontinuous mappings},
journal = {Izvestiya. Mathematics },
pages = {27--49},
publisher = {mathdoc},
volume = {42},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a1/}
}
E. N. Domanskii. On Maslov regularizability of discontinuous mappings. Izvestiya. Mathematics , Tome 42 (1994) no. 1, pp. 27-49. http://geodesic.mathdoc.fr/item/IM2_1994_42_1_a1/