Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities
Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 567-580.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author constructs and studies the properties of a $u$-Gibbs invariant measure for hyperbolic mappings with singularities, for which the unstable subspace is one-dimensional and which satisfy some regularity conditions. These conditions are satisfied by the Lorenz mapping, the Lozi mapping and the Belykh mapping among others. Various properties are proved: the denseness of periodic trajectories, topological transitivity, and convergence of the means.
@article{IM2_1993_41_3_a7,
     author = {E. A. Sataev},
     title = {Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities},
     journal = {Izvestiya. Mathematics },
     pages = {567--580},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a7/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 567
EP  - 580
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a7/
LA  - en
ID  - IM2_1993_41_3_a7
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities
%J Izvestiya. Mathematics 
%D 1993
%P 567-580
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a7/
%G en
%F IM2_1993_41_3_a7
E. A. Sataev. Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities. Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 567-580. http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a7/

[1] Lorenz E. N., “Deterministic, nonperiodic flow”, J. Atmosph. Sci., 20:2 (1963), 130–141 ; Lorents E., “Determinirovannoe neperiodicheskoe techenie”, Strannye attraktory, Mir, M., 1981, 253 pp. | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | MR

[2] Saltsman B., “Finite amplitude free convection as an intial Value problem”, J. Atmosph. Sci., 19:2 (1962), 329–341 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] Sinai Ja. G., Vul E. B., “Hyperbolvcity conditions for the Lorenz model”, Phys. D., 2D:1 (1981), 3–7 | DOI | MR

[4] Robinson C., “Homoclinic bifurcation to a transitive attractor of Lorenz type”, Nonlinearity, 2:4 (1989), 495–518 | DOI | MR | Zbl

[5] Rychlik M., “Lorenz attractors through Sil'nikov type bifurcation, I”, Ergod. Theory and Dyn. Syst., 10:4 (1990), 793–821 | MR | Zbl

[6] Shilnikov L. P., “Teoriya bifurkatsii i kvaziperiodicheskie attraktory”, UMN, 36:4 (1981), 240–241

[7] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. Mosk. matem. ob-va, 44, 1982, 150–212 | MR | Zbl

[8] Bunimovich L. A., Sinai Ya. G., “Stokhastichnost attraktora v modeli Lorentsa”, Nelineinye volny, ed. A. V. Gaponov-Grekhov, Nauka, M., 1980, 212–226

[9] Bunimovich L., “Statistical properties of Lorenz attractors”, Nonlinear dynamics and turbulence, ed. G. I. Barenblatt, Pitman, Boston etc., 1983, 71–92 | MR

[10] Lozi R., “Un attracteur etrange du type de Henon”, J. Phys., 39:5 (1978), 9–10

[11] Hennon M., “A two-dimensional mapping with a strange attractor”, Commun. Math. Phys., 50:1 (1976), 69–77 | DOI | MR

[12] Misiurewicz M., Strange attractors for the Lozi mappings, Nonlinear dynamics, ed. R. G. Helleman, The New York Academy of Sciences, N.Y., 1980 | MR | Zbl

[13] Collet P., Levy Y., “Ergodic properties of the Lozi mappings”, Commun. Math. Phys., 93:3 (1984), 461–482 | DOI | MR

[14] Young L.-S., “Bowen–Ruelle measures for certain piece wise hyperbolic maps”, Trans. Amer. Math. Soc., 287:1 (1985), 41–48 | DOI | MR | Zbl

[15] Belykh V. P., “Modeli diskretnykh sistem fazovoi sinkhronizatsii”, Sistemy fazovoi sinkhronizatsii, eds. V. V. Shakhgildyan, L. N. Belyustina, Radio i svyaz, M., 1978, 161–176

[16] Sataev E. A., “Gibbsovskie mery dlya giperbolicheskikh otobrazhenii s osobennostyami”, UMN, 47:1 (1992), 147–202 | MR | Zbl

[17] Pesin Ja. B., “Dynamical systems with generalized hyperbolic attraetors: hyperbolic, ergodic and topological properties”, Erg. Theory and Dynamical Systems, 1992 | Zbl