Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1993_41_3_a7, author = {E. A. Sataev}, title = {Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities}, journal = {Izvestiya. Mathematics }, pages = {567--580}, publisher = {mathdoc}, volume = {41}, number = {3}, year = {1993}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a7/} }
E. A. Sataev. Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities. Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 567-580. http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a7/
[1] Lorenz E. N., “Deterministic, nonperiodic flow”, J. Atmosph. Sci., 20:2 (1963), 130–141 ; Lorents E., “Determinirovannoe neperiodicheskoe techenie”, Strannye attraktory, Mir, M., 1981, 253 pp. | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | MR
[2] Saltsman B., “Finite amplitude free convection as an intial Value problem”, J. Atmosph. Sci., 19:2 (1962), 329–341 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[3] Sinai Ja. G., Vul E. B., “Hyperbolvcity conditions for the Lorenz model”, Phys. D., 2D:1 (1981), 3–7 | DOI | MR
[4] Robinson C., “Homoclinic bifurcation to a transitive attractor of Lorenz type”, Nonlinearity, 2:4 (1989), 495–518 | DOI | MR | Zbl
[5] Rychlik M., “Lorenz attractors through Sil'nikov type bifurcation, I”, Ergod. Theory and Dyn. Syst., 10:4 (1990), 793–821 | MR | Zbl
[6] Shilnikov L. P., “Teoriya bifurkatsii i kvaziperiodicheskie attraktory”, UMN, 36:4 (1981), 240–241
[7] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. Mosk. matem. ob-va, 44, 1982, 150–212 | MR | Zbl
[8] Bunimovich L. A., Sinai Ya. G., “Stokhastichnost attraktora v modeli Lorentsa”, Nelineinye volny, ed. A. V. Gaponov-Grekhov, Nauka, M., 1980, 212–226
[9] Bunimovich L., “Statistical properties of Lorenz attractors”, Nonlinear dynamics and turbulence, ed. G. I. Barenblatt, Pitman, Boston etc., 1983, 71–92 | MR
[10] Lozi R., “Un attracteur etrange du type de Henon”, J. Phys., 39:5 (1978), 9–10
[11] Hennon M., “A two-dimensional mapping with a strange attractor”, Commun. Math. Phys., 50:1 (1976), 69–77 | DOI | MR
[12] Misiurewicz M., Strange attractors for the Lozi mappings, Nonlinear dynamics, ed. R. G. Helleman, The New York Academy of Sciences, N.Y., 1980 | MR | Zbl
[13] Collet P., Levy Y., “Ergodic properties of the Lozi mappings”, Commun. Math. Phys., 93:3 (1984), 461–482 | DOI | MR
[14] Young L.-S., “Bowen–Ruelle measures for certain piece wise hyperbolic maps”, Trans. Amer. Math. Soc., 287:1 (1985), 41–48 | DOI | MR | Zbl
[15] Belykh V. P., “Modeli diskretnykh sistem fazovoi sinkhronizatsii”, Sistemy fazovoi sinkhronizatsii, eds. V. V. Shakhgildyan, L. N. Belyustina, Radio i svyaz, M., 1978, 161–176
[16] Sataev E. A., “Gibbsovskie mery dlya giperbolicheskikh otobrazhenii s osobennostyami”, UMN, 47:1 (1992), 147–202 | MR | Zbl
[17] Pesin Ja. B., “Dynamical systems with generalized hyperbolic attraetors: hyperbolic, ergodic and topological properties”, Erg. Theory and Dynamical Systems, 1992 | Zbl