Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities
Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 567-580

Voir la notice de l'article provenant de la source Math-Net.Ru

The author constructs and studies the properties of a $u$-Gibbs invariant measure for hyperbolic mappings with singularities, for which the unstable subspace is one-dimensional and which satisfy some regularity conditions. These conditions are satisfied by the Lorenz mapping, the Lozi mapping and the Belykh mapping among others. Various properties are proved: the denseness of periodic trajectories, topological transitivity, and convergence of the means.
@article{IM2_1993_41_3_a7,
     author = {E. A. Sataev},
     title = {Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities},
     journal = {Izvestiya. Mathematics },
     pages = {567--580},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a7/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 567
EP  - 580
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a7/
LA  - en
ID  - IM2_1993_41_3_a7
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities
%J Izvestiya. Mathematics 
%D 1993
%P 567-580
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a7/
%G en
%F IM2_1993_41_3_a7
E. A. Sataev. Gibbs measures for one-dimensional attractors of hyperbolic mappingss with singularities. Izvestiya. Mathematics , Tome 41 (1993) no. 3, pp. 567-580. http://geodesic.mathdoc.fr/item/IM2_1993_41_3_a7/