On combinatorial analogs of the group of diffeomorphisms of the circle
Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 337-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this article is to construct and study groups which, from the point of view of the theory of representations, should resemble the group of diffeomorphisms of the circle. The first type of such groups are the diffeomorphism groups of $p$-adic projective lines. The second type are groups consisting of diffeomorphisms (satisfying certain conditions) of the absolutes of Bruhat–Tits trees; they can be regarded as precisely the diffeomorphism groups of Cantor perfect sets. Several series of unitary representations of these groups are constructed, including the analogs of highest-weight representations.
@article{IM2_1993_41_2_a7,
     author = {Yu. A. Neretin},
     title = {On combinatorial analogs of the group of diffeomorphisms of the circle},
     journal = {Izvestiya. Mathematics },
     pages = {337--349},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a7/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - On combinatorial analogs of the group of diffeomorphisms of the circle
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 337
EP  - 349
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a7/
LA  - en
ID  - IM2_1993_41_2_a7
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T On combinatorial analogs of the group of diffeomorphisms of the circle
%J Izvestiya. Mathematics 
%D 1993
%P 337-349
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a7/
%G en
%F IM2_1993_41_2_a7
Yu. A. Neretin. On combinatorial analogs of the group of diffeomorphisms of the circle. Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 337-349. http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a7/

[1] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[2] Bryua F., Tits Zh., “Stroenie poluprostykh algebraicheskikh grupp nad lokalnymi polyami”, Matematika (Sb. perevodov inostrannykh statei.), 12:5 (1968), 19–33

[3] Serr Zh. P., “Stroenie $p$-adicheskikh mnogoobrazii”, Gruppy Li i algebry Li, Mir, M., 1969 | MR | Zbl

[4] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[5] Ismagilov R. S., “Ogranichennye simmetricheskie oblasti, svyazannye s faktorami tipa II i predstavleniya nekotorykh beskonechnomernykh grupp”, Funktsion. analiz i ego prilozh., 26:2 (1992), 72–74 | MR | Zbl

[6] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1972 | MR

[7] Makdonald I. G., “Sfericheskie funktsii na gruppe $p$-adicheskogo tipa”, UMN, 28:5 (1973), 155–224 | MR

[8] Neretin Yu. A., “Dopolnitelnaya seriya predstavlenii gruppy diffemorfizmov okruzhnosti”, UMN, 37:2 (1982), 213–214 | MR | Zbl

[9] Neretin. Yu. A., “Unitarnye predstavleniya gruppy diffeomorfizmov okruzhnosti so starshim vesom”, Funktsion. analiz i ego prilozh., 17:3 (1983), 85–86 | MR | Zbl

[10] Neretin Yu. A., “Unitarnye predstavleniya gruppy diffeomorfizmov $p$-adicheskoi proektivnoi pryamoi”, Funktsion. analiz i ego prilozh., 18:4 (1984), 92–93 | MR | Zbl

[11] Neretin Yu. A., “O spinornom predstavlenii $O(\infty,\mathbf{C})$”, DAN SSSR, 289:2 (1986), 282–285 | MR

[12] Neretin Yu. A., “Pochti invariantnye struktury i konstruktsii unitarnykh predstavlenii gruppy diffeomorfizmov okruzhnosti”, DAN SSSR, 294:1, 37–41 | MR | Zbl

[13] Neretin Yu. A., “Predstavleniya algebry Virasoro i affinnykh algebr”, Sovrem. probl. matem. Fundamentalnye napravleniya, 22, VINITI, M., 1988, 163–224 | MR

[14] Olshanskii G. I., “Klassifikatsiya neprivodimykh predstavlenii grupp avtomorfizmov derevev Bryua–Titsa”, Funktsion. analiz i ego prilozh., 11:1 (1977), 32–42 | MR

[15] Olshanskii G. I., “Unitarnye predstavleniya beskonechnomernykh klassicheskikh par $(G,K)$ i formalizm Khau”, DAN SSSR, 250:1 (1983), 33–36 | MR

[16] Cartier P., “Geométrié et analyse sur les arbres”, Lect. Notes. Math., 317, 1973, 123–140 | MR | Zbl

[17] Kac V. G., Infinite dimentional Lie algebras, Birkhauser, Boston, 1983 | Zbl

[18] Neretin Yu. A., “Infinite dimentional groups. Their mantles, trains and representations”, Adv. Sov. Math., 2 (1991), 103–171 | MR | Zbl

[19] Neretin Yu. A., “Almost invariant structures and related representations of group of diffeomorphisms of the circle”, Representations of Lie groups and related topics, Gordon and Breach, N.Y., 1991, 245–268 | MR

[20] Olshanskii G. I., “Unitary representations of infinite dimentional pairs $(G,K)$ and the formalism of R. Howe”, Representations of Lie groups and related topics, Gordon and Breach, N.Y., 1991, 269–464 | MR

[21] Segal Gr., “Unitary representations of some infinite dimentional groups”, Commun. Math. Phys., 80:3 (1981), 301–342 | DOI | MR | Zbl

[22] Shale D., “Linear symmetries of the free boson field”, Trans. Amer. Math. Soc., 103 (1962), 149–167 | DOI | MR | Zbl

[23] Shale D., Stinespring W. F., “Spinor representation of infinite dimentional orthogonal group”, J. Math. and Mech., 14:2 (1965), 315–322 | MR | Zbl

[24] Vladimirov V. S., Volovich I. V., “$p$-adie quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl