Connection homology and cohomology between sets. Enclosure homology and cohomology of a closed set
Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 307-335

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of connection homology and cohomology between complementary subsets of a topological space are defined, using passage to the limit with respect to boundary-open sets, i.e., complements of pairs of closed subsets of the given complementary sets. The homology and cohomology groups so obtained enter naturally into new exact homology and cohomology sequences.
@article{IM2_1993_41_2_a6,
     author = {E. G. Sklyarenko},
     title = {Connection homology and cohomology between sets. {Enclosure} homology and cohomology of a closed set},
     journal = {Izvestiya. Mathematics },
     pages = {307--335},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a6/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - Connection homology and cohomology between sets. Enclosure homology and cohomology of a closed set
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 307
EP  - 335
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a6/
LA  - en
ID  - IM2_1993_41_2_a6
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T Connection homology and cohomology between sets. Enclosure homology and cohomology of a closed set
%J Izvestiya. Mathematics 
%D 1993
%P 307-335
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a6/
%G en
%F IM2_1993_41_2_a6
E. G. Sklyarenko. Connection homology and cohomology between sets. Enclosure homology and cohomology of a closed set. Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 307-335. http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a6/