Connection homology and cohomology between sets. Enclosure homology and cohomology of a closed set
Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 307-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of connection homology and cohomology between complementary subsets of a topological space are defined, using passage to the limit with respect to boundary-open sets, i.e., complements of pairs of closed subsets of the given complementary sets. The homology and cohomology groups so obtained enter naturally into new exact homology and cohomology sequences.
@article{IM2_1993_41_2_a6,
     author = {E. G. Sklyarenko},
     title = {Connection homology and cohomology between sets. {Enclosure} homology and cohomology of a closed set},
     journal = {Izvestiya. Mathematics },
     pages = {307--335},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a6/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - Connection homology and cohomology between sets. Enclosure homology and cohomology of a closed set
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 307
EP  - 335
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a6/
LA  - en
ID  - IM2_1993_41_2_a6
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T Connection homology and cohomology between sets. Enclosure homology and cohomology of a closed set
%J Izvestiya. Mathematics 
%D 1993
%P 307-335
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a6/
%G en
%F IM2_1993_41_2_a6
E. G. Sklyarenko. Connection homology and cohomology between sets. Enclosure homology and cohomology of a closed set. Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 307-335. http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a6/

[1] Zarelua A. V., “Konechnokratnye otobrazheniya topologicheskikh prostranstv i kogomologicheskikh mnogoobrazii”, Sib. matem. zhurn., 10:1 (1969), 64–92 | MR | Zbl

[2] Kuzminov V. P., “Proizvodnye faktory obratnogo predela i klassy rasshirenii”, Sib. matem. zhurn., 12:2 (1971), 384–396 | MR

[3] Kuzminov V. I., Liseikin V. D., “O myagkosti induktivnogo predela myagkikh puchkov”, Sib. matem. zhurn., 12:5 (1971), 1137–1141 | MR

[4] Sklyarenko E. G., “Teoriya gomologii i aksioma tochnosti”, UMN, 24:5 (1969), 87–140 | MR | Zbl

[5] Sklyarenko E. G., “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 35:4 (1971), 831–843 | Zbl

[6] Sklyarenko E. G., “K teorii gomologii, assotsiirovannoi s kogomologiyami Aleksandrova–Chekha”, UMN, 34:6 (1979), 90–118 | MR | Zbl

[7] Sklyarenko E. G., “O gomologicheski lokalno svyaznykh prostranstvakh”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1417–1433 | MR | Zbl

[8] Sklyarenko E. G., “Gomologii i kogomologii obschikh prostranstv”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravl., 50, VINITI, 1989, 129–266 | MR

[9] Sklyarenko E. G., “Obschie teorii gomologii i kogomologii. Sovremennoe sostoyanie i tipichnye primeneniya”, Itogi nauki i tekhn. Algebra, topologiya, geometriya, 27, VINITI, 1989, 125–228 | MR

[10] Alexandroff P., “On local properties of closed sets”, Ann. of Math. Ser. 2, 36:1 (1935), 1–35 | DOI | MR | Zbl

[11] Borel A., Seminar on transformation groups, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais, Annals of Mathematics Studies, 46, Princeton University Press, Princeton, N.J., 1960, 245 pp. | MR | Zbl

[12] Borel A., Moore J. C., “Homology theory for locally compact spaces”, Michig. Math. J., 7 (1960), 137–160 | DOI | MR

[13] Brahana T. R., “A theorem about local Betti groups”, Michig. Math. Journ., 4:1 (1957), 33–37 | DOI | MR | Zbl

[14] Bredon G. E., Sheaf theory, Me Graw-Hill, N.Y., 1967, 272 pp., (Imeetsya russkii perevod) | MR

[15] Cartan H., Cohomologie des groups, suite spectral, faisceaux, Séminaire, Ecole Norm. Super, Paris, 1950–1951

[16] Cartan H., Eilenberg S., Homological algebra, Princeton Univ. Press, Princeton, 1956, 488 pp., (Imeetsya russkii perevod) | MR | Zbl

[17] Conner P., “On the impossibility of fibering certain manifolds by a compact fiber”, Michig. Math. J., 4 (1957), 249–256 | DOI | MR

[18] Conner P. E., Floyd E. E., “A characterization of generalized manifolds”, Michig. Math. J., 6:1 (1959), 33–43 | DOI | MR | Zbl

[19] Dold A., Lectures on algebraic topology, Springer, Berlin, Heidelberg, N.Y., 1972, 377 pp., (Imeetsya russkii perevod) | MR

[20] Eilenberg S., Moore J. C., “Limits and spectral sequences”, Topology, 1 (1962), 1–23 | DOI | MR | Zbl

[21] Eklof P. C., Set theoretic methods in homological algebra and abelian groups, Les Presses de I'Univers. de Montréal, 1980 ; Eklof P., Teoretiko-mnozhestvennye metody v gomologicheskoi algebre i teorii abelevykh grupp, Mir, M., 1986 | MR | Zbl | Zbl

[22] Godbillon C., “Cohomologie á l'infini des espaces localement compact”, C.R. Acad. Sci. Ser. A., 264:9 (1967), A394–A396 | MR

[23] Hartshorn R., Local cohomology, A seminar given by A. Grothendick (Harvard University, Fall, 1961), Lecture Notes in Mathem., 41, Springer-Verlag, Berlin, Heidelberg, N.Y., 1967 | MR | Zbl

[24] Iversen B., Cohomology of sheaves, Springer-Verlag, Berlin, Heidelberg, N.Y., Tokyo, 1986, 464 pp. | MR

[25] Jensen C. U., “Les foncteurs dérivés de $\varprojlim$ et leurs applications en théorie des modules”, Lect. Notes Math., 254, 1972, 103 p | MR | Zbl

[26] Laudal L. A., “Cohomologie locale, applications”, Math. Scand., 12:2 (1963), 147–162 | MR

[27] Mardešic S., Prasolov A. V., “Strong homology is not additive”, Trans. Amer. Math. Soc., 307:2 (1988), 725–744 | DOI | MR | Zbl

[28] Massey W. S., “How to give an exposition of the Čech–Alexander–Spanier type homology theory”, Amer. Math. Monthly, 85:2 (1978), 75–83 | DOI | MR | Zbl

[29] Massey W. S., Homology and cohomology theory, M. Dekker inc., N.Y., Basel, 1978, 412 pp., (Imeetsya russkii perevod) | MR | Zbl

[30] Mitchell W. J. R., “Local homology and cohomology”, Math. Proc. Camb. Phil. Soc., 89:2 (1981), 309–324 | DOI | MR | Zbl

[31] Raymond F., “A note on the local "$C$" groups of Griffiths”, Michig. Math. J., 7 (1960), 1–6 | DOI | MR

[32] Raymond F., “Local cohomology groups with closed supports”, Math. Zeit, 76:1 (1961), 31–41 | DOI | MR | Zbl

[33] Schapira P., Theorie des hyperfonctions, Lect. Notes Math., 126, 1970, 157 pp., (Imeetsya russkii perevod) | MR | Zbl

[34] Spanier E. H., Algebraic topology, McGraw-Hill, N.Y., 528 pp., (Imeetsya russkii perevod) | MR | Zbl

[35] Swan R. G., The theory of sheaves, Math. Inst. Univ. of Oxford, 1958, 174 pp.

[36] Verdier J.-L., “Faisceaux constructibles sur un espace localement compact”, C. R. Acad. Sci. Paris Sér. A-B, 262:1 (1966), A12–A15 | MR

[37] Wilder R. L., Topology of manifolds, Ann. Math. Soc. Coll. Publ., 32, 1949 | MR | Zbl

[38] Dow A., Simon P., Vaughan J. E., “Strong homology and the proper forcing axiom”, Proc. Amer. Math. Soc., 106:3 (1989), 821–828 | DOI | MR | Zbl