A direct method of constructing an invariant measure on a hyperbolic attractor
Izvestiya. Mathematics, Tome 41 (1993) no. 2, pp. 207-227
Cet article a éte moissonné depuis la source Math-Net.Ru
A new method of proving the existence of a natural invariant measure on a mixing hyperbolic attractor of a smooth mapping, and also its smooth dependence on the mapping, is proposed. It is proved directly that the sequence of mean integral values of a smooth function over the images of an arbitrary domain with a smooth measure converges with exponential speed to the mean value of the function with respect to an invariant measure. Here it is not required to construct a Markov partition, the expanding and contracting foliations, and the attractor itself.
@article{IM2_1993_41_2_a2,
author = {V. I. Bakhtin},
title = {A direct method of constructing an invariant measure on a hyperbolic attractor},
journal = {Izvestiya. Mathematics},
pages = {207--227},
year = {1993},
volume = {41},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a2/}
}
V. I. Bakhtin. A direct method of constructing an invariant measure on a hyperbolic attractor. Izvestiya. Mathematics, Tome 41 (1993) no. 2, pp. 207-227. http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a2/
[1] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. Matem. in-ta im. V. A. Steklova, 90, 1967, 210 pp. | MR | Zbl
[2] Anosov D. V., Sinai Ya. G., “Nekotorye gladkie ergodicheskie sistemy”, UMN, 22:5 (1967), 107–172 | MR | Zbl
[3] Bouen R., Metody simvolicheskoi dinamiki, Sb. statei, Mir, M., 1979, 245 pp.
[4] Ruelle D., “A measure associated with Axiom A attractors”, Amer. J. Math., 98 (1970), 619–654 | DOI | MR
[5] Sinai Ya. G., “Markovskie razbieniya i $Y$-diffeomorfizmy”, Funkts. analiz., 2:1 (1968), 64–89 | MR | Zbl
[6] Sinai Ya. G., “Gibbsovskie mery v ergodicheskoi teorii”, UMH, 27:4 (1972), 21–64 | MR | Zbl