A direct method of constructing an invariant measure on a hyperbolic attractor
Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 207-227

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of proving the existence of a natural invariant measure on a mixing hyperbolic attractor of a smooth mapping, and also its smooth dependence on the mapping, is proposed. It is proved directly that the sequence of mean integral values of a smooth function over the images of an arbitrary domain with a smooth measure converges with exponential speed to the mean value of the function with respect to an invariant measure. Here it is not required to construct a Markov partition, the expanding and contracting foliations, and the attractor itself.
@article{IM2_1993_41_2_a2,
     author = {V. I. Bakhtin},
     title = {A direct method of constructing an invariant measure on a hyperbolic attractor},
     journal = {Izvestiya. Mathematics },
     pages = {207--227},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a2/}
}
TY  - JOUR
AU  - V. I. Bakhtin
TI  - A direct method of constructing an invariant measure on a hyperbolic attractor
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 207
EP  - 227
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a2/
LA  - en
ID  - IM2_1993_41_2_a2
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%T A direct method of constructing an invariant measure on a hyperbolic attractor
%J Izvestiya. Mathematics 
%D 1993
%P 207-227
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a2/
%G en
%F IM2_1993_41_2_a2
V. I. Bakhtin. A direct method of constructing an invariant measure on a hyperbolic attractor. Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 207-227. http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a2/