Congruences for Euler, Bernoulli, and Springer numbers of Coxeter groups
Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 389-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical and generalized Euler numbers, reduced with respect to an odd modulus, are represented as sums of exponentials. From this representation there follow congruences modulo powers of an odd prime $p$ between elements of the Euler–Bernoulli triangles and the values of certain polynomials in two variables on sublattices with step $p-1$.
@article{IM2_1993_41_2_a11,
     author = {V. I. Arnol'd},
     title = {Congruences for {Euler,} {Bernoulli,} and {Springer} numbers of {Coxeter} groups},
     journal = {Izvestiya. Mathematics },
     pages = {389--393},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a11/}
}
TY  - JOUR
AU  - V. I. Arnol'd
TI  - Congruences for Euler, Bernoulli, and Springer numbers of Coxeter groups
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 389
EP  - 393
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a11/
LA  - en
ID  - IM2_1993_41_2_a11
ER  - 
%0 Journal Article
%A V. I. Arnol'd
%T Congruences for Euler, Bernoulli, and Springer numbers of Coxeter groups
%J Izvestiya. Mathematics 
%D 1993
%P 389-393
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a11/
%G en
%F IM2_1993_41_2_a11
V. I. Arnol'd. Congruences for Euler, Bernoulli, and Springer numbers of Coxeter groups. Izvestiya. Mathematics , Tome 41 (1993) no. 2, pp. 389-393. http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a11/

[1] Arnold V. I., “Bernoulli–Euler updown numbers associated with function singularities, their combinatorics and arithmetics”, Duke Mathematical Journal, 63:2 (1991), 537–555 | DOI | MR | Zbl

[2] Arnold V. I., Springer numbers and Morsification spaces, Preprint No 658, Utrecht University, Utrecht, 1991; J. Alg. Geom., 1:2 (1992)

[3] Arnold V. I., “Ischislenie zmei i kombinatorika chisel Bernulli, Eilera i Springera grupp Kokstera”, UMN, 47:1 (1992), 3–45 | MR

[4] Springer T., “Remarks on a combinatorial problem”, Nieuw Arch. Wisk. (3), 19 (1971), 30–36 | MR | Zbl