Congruences for Euler, Bernoulli, and Springer numbers of Coxeter groups
Izvestiya. Mathematics, Tome 41 (1993) no. 2, pp. 389-393
Cet article a éte moissonné depuis la source Math-Net.Ru
The classical and generalized Euler numbers, reduced with respect to an odd modulus, are represented as sums of exponentials. From this representation there follow congruences modulo powers of an odd prime $p$ between elements of the Euler–Bernoulli triangles and the values of certain polynomials in two variables on sublattices with step $p-1$.
@article{IM2_1993_41_2_a11,
author = {V. I. Arnol'd},
title = {Congruences for {Euler,} {Bernoulli,} and {Springer} numbers of {Coxeter} groups},
journal = {Izvestiya. Mathematics},
pages = {389--393},
year = {1993},
volume = {41},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a11/}
}
V. I. Arnol'd. Congruences for Euler, Bernoulli, and Springer numbers of Coxeter groups. Izvestiya. Mathematics, Tome 41 (1993) no. 2, pp. 389-393. http://geodesic.mathdoc.fr/item/IM2_1993_41_2_a11/
[1] Arnold V. I., “Bernoulli–Euler updown numbers associated with function singularities, their combinatorics and arithmetics”, Duke Mathematical Journal, 63:2 (1991), 537–555 | DOI | MR | Zbl
[2] Arnold V. I., Springer numbers and Morsification spaces, Preprint No 658, Utrecht University, Utrecht, 1991; J. Alg. Geom., 1:2 (1992)
[3] Arnold V. I., “Ischislenie zmei i kombinatorika chisel Bernulli, Eilera i Springera grupp Kokstera”, UMN, 47:1 (1992), 3–45 | MR
[4] Springer T., “Remarks on a combinatorial problem”, Nieuw Arch. Wisk. (3), 19 (1971), 30–36 | MR | Zbl