Twice differentiability of subharmonic functions
Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 157-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a subharmonic function is twice differentiable outside a set of small Lebesgue measure.
@article{IM2_1993_41_1_a7,
     author = {S. A. Imomkulov},
     title = {Twice differentiability of subharmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {157--167},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a7/}
}
TY  - JOUR
AU  - S. A. Imomkulov
TI  - Twice differentiability of subharmonic functions
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 157
EP  - 167
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a7/
LA  - en
ID  - IM2_1993_41_1_a7
ER  - 
%0 Journal Article
%A S. A. Imomkulov
%T Twice differentiability of subharmonic functions
%J Izvestiya. Mathematics 
%D 1993
%P 157-167
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a7/
%G en
%F IM2_1993_41_1_a7
S. A. Imomkulov. Twice differentiability of subharmonic functions. Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 157-167. http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a7/

[1] Cartan H., “Theorie du Potential newtonien: energie, capacite, suites fe potentials”, Bull. Soc. Math. France, 73 (1945), 74–106 | MR | Zbl

[2] Sadullaev A., Madrakhimov R. M., “Gladkost subgarmonicheskikh funktsii”, Matem. sb., 181:2 (1990), 167–182 | MR | Zbl

[3] Whithey H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR

[4] Aleksandrov A. D., “Suschestvovanie pochti vezde vtorogo differentsiala vypukloi funktsii i nekotorye svyazannye s nim svoistva vypuklykh poverkhnostei”, Uch. zapiski LGU, Ser. matem., 1939, no. 6, 3–35 | Zbl

[5] Reshetnyak Yu. G., “Obobschennye proizvodnye i differentsiruemost pochti vsyudu”, Matem. sb., 75(117):3 (1958), 323–334 | MR

[6] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[7] Landkof N. S., Osnovy sovremennoi teorii potentsialov, Nauka, M., 1966 | MR | Zbl

[8] Calderon A. P., Zygmund A., “On the existence of certain singular integrals”, Acta. Math., 88 (1952), 85–139 | DOI | MR | Zbl

[9] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[10] Kolmogorov A. I., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[11] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl