On the denseness of the set of nonintegrable hamiltonians
Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 143-155
Voir la notice de l'article provenant de la source Math-Net.Ru
For the set of Hamiltonian systems in a $2n$-dimensional phase space with Hamiltonians that are real analytic in a neighborhood of an equilibrium state of the system a generalization of Siegel's result is proved for $n>2$: the set of nonintegrable Hamiltonians is everywhere dense in the set of all Hamiltonians of the above form.
@article{IM2_1993_41_1_a6,
author = {S. I. Pidkuiko},
title = {On the denseness of the set of nonintegrable hamiltonians},
journal = {Izvestiya. Mathematics },
pages = {143--155},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a6/}
}
S. I. Pidkuiko. On the denseness of the set of nonintegrable hamiltonians. Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a6/