On the denseness of the set of nonintegrable hamiltonians
Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 143-155

Voir la notice de l'article provenant de la source Math-Net.Ru

For the set of Hamiltonian systems in a $2n$-dimensional phase space with Hamiltonians that are real analytic in a neighborhood of an equilibrium state of the system a generalization of Siegel's result is proved for $n>2$: the set of nonintegrable Hamiltonians is everywhere dense in the set of all Hamiltonians of the above form.
@article{IM2_1993_41_1_a6,
     author = {S. I. Pidkuiko},
     title = {On the denseness of the set of nonintegrable hamiltonians},
     journal = {Izvestiya. Mathematics },
     pages = {143--155},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a6/}
}
TY  - JOUR
AU  - S. I. Pidkuiko
TI  - On the denseness of the set of nonintegrable hamiltonians
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 143
EP  - 155
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a6/
LA  - en
ID  - IM2_1993_41_1_a6
ER  - 
%0 Journal Article
%A S. I. Pidkuiko
%T On the denseness of the set of nonintegrable hamiltonians
%J Izvestiya. Mathematics 
%D 1993
%P 143-155
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a6/
%G en
%F IM2_1993_41_1_a6
S. I. Pidkuiko. On the denseness of the set of nonintegrable hamiltonians. Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a6/