On the denseness of the set of nonintegrable hamiltonians
Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 143-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the set of Hamiltonian systems in a $2n$-dimensional phase space with Hamiltonians that are real analytic in a neighborhood of an equilibrium state of the system a generalization of Siegel's result is proved for $n>2$: the set of nonintegrable Hamiltonians is everywhere dense in the set of all Hamiltonians of the above form.
@article{IM2_1993_41_1_a6,
     author = {S. I. Pidkuiko},
     title = {On the denseness of the set of nonintegrable hamiltonians},
     journal = {Izvestiya. Mathematics },
     pages = {143--155},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a6/}
}
TY  - JOUR
AU  - S. I. Pidkuiko
TI  - On the denseness of the set of nonintegrable hamiltonians
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 143
EP  - 155
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a6/
LA  - en
ID  - IM2_1993_41_1_a6
ER  - 
%0 Journal Article
%A S. I. Pidkuiko
%T On the denseness of the set of nonintegrable hamiltonians
%J Izvestiya. Mathematics 
%D 1993
%P 143-155
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a6/
%G en
%F IM2_1993_41_1_a6
S. I. Pidkuiko. On the denseness of the set of nonintegrable hamiltonians. Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a6/

[1] Zigel K. L., “Ob integralakh kanonicheskikh sistem”, Matematika, 5:2 (1961), 103–117

[2] Zigel K. L., “O suschestvovanii normalnoi formy differentsialnykh uravnenii Gamiltona”, Matematika, 5:2 (1961), 129–155

[3] Birkgof Dzh. D., Dinamicheskie sistemy, Gostekhizdat, M., L., 1941

[4] Uitteker E. T., Analiticheskaya dinamika, GTTL, M., L., 1937

[5] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[6] Gelfond A. O., Transtsendentnye i algebraicheskie chisla, GTTL, M., 1952

[7] Ziglin S. L., “Vetvlenie reshenii i nesuschestvovanie pervykh integralov v gamiltonovoi mekhanike”, Funktsion. analiz i ego prilozh., 16:3 (1982), 30–41 | MR | Zbl

[8] Poincáre H., Les methodes nouvelles de la mécanique céleste, 2, Paris, 1893

[9] Whittaker E. T., “On the solution of dynamical problems in terms of trigonometric series”, Proc. London Math. Soc., 34 (1902), 206–221 | DOI | Zbl

[10] Whittaker E. T., “On the adelphic integral of the differential equations of dynamics”, Proc. Royal Soc. Edinburgh, 37 (1918), 95–116

[11] Birkhoff G. D., “Surface transformations and their dynamical applications”, Acta Math., 43 (1922), 1–119 | DOI | MR

[12] Hill G. W., “Remarks on the progress of celestial mechanics since the middle of the century”, Bull. Amer. Math. Soc., 2 (1896), 125–136, 2nd ser | DOI

[13] Ito H., “Convergence of Birkhoff normal forms for integrable systems”, Comm. Math. Helv., 64:3 (1989), 412–461 | DOI | MR | Zbl

[14] Vey J., “Orbites périodiques d'un système hamiltonian au voisinage d'un point d'equilibre”, Ann. Scuola Norm. Super. Pisa. Ser. 4, 5:4 (1978), 757–787 | MR | Zbl

[15] Francoise J. P., “Points périodiques de transformations canoniques”, C.R. Acad. Sci. Paris Sér. A-B, 286:24 (1978), A1215–A1217 | MR