On spectral properties of $p$-adic pseudodifferential operators of Schr\"odinger type
Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 55-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spectral problems are considered for $p$-adic pseudodifferential operators of Schrödinger type for open-closed sets (bounded or not) in the space $Q_p^n$ with a potential tending to $+\infty$ at infinity. Some inversion theorems are proved. A method is presented and justified for constructing all eigenfunctions and eigenvalues for $M$-invariant symbols.
@article{IM2_1993_41_1_a2,
     author = {V. S. Vladimirov},
     title = {On spectral properties of $p$-adic pseudodifferential operators of {Schr\"odinger} type},
     journal = {Izvestiya. Mathematics },
     pages = {55--73},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a2/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - On spectral properties of $p$-adic pseudodifferential operators of Schr\"odinger type
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 55
EP  - 73
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a2/
LA  - en
ID  - IM2_1993_41_1_a2
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T On spectral properties of $p$-adic pseudodifferential operators of Schr\"odinger type
%J Izvestiya. Mathematics 
%D 1993
%P 55-73
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a2/
%G en
%F IM2_1993_41_1_a2
V. S. Vladimirov. On spectral properties of $p$-adic pseudodifferential operators of Schr\"odinger type. Izvestiya. Mathematics , Tome 41 (1993) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/IM2_1993_41_1_a2/

[1] Vladimirov V. S., “O spektre nekotorykh psevdodifferentsialnykh operatorov nad polem $p$-adicheskikh chisel”, Algebra i analiz, 2:6 (1990), 107–124 | MR | Zbl

[2] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:5 (1988), 17–53 | MR | Zbl

[3] Vladimirov F. S., Volovich I. V., “$P$-Adic Quantum Mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl

[4] Vladimirov V. S., “$P$-Adic Analysis and $p$-Adic Quantum Mechanics”, Ann. of the New York Ac. of Sc., Symposium in Frontiers of Math., N.Y., 1988

[5] Vladimirov V. S., Volovich I. V., Zelenov E. I., “Spektralnaya teoriya v $p$-adicheskoi kvantovoi mekhanike i teoriya predstavlenii”, Izv. AN SSSR. Ser. matem., 54 (1990), 275–302 | MR | Zbl

[6] Vladimirov V. S., Volovich I. V., “Primenenie $p$-adicheskikh chisel v matematicheskoi fizike”, Tr. MIAN, 200, 1991, 88–99 | MR | Zbl

[7] Arefeva I. Ya, Volovich I. V., “Quantum Group Particles and Non-Archimedean Geometry”, Phys. Lett. B., 268 (1991), 179–187 | DOI | MR

[8] Kochubei A. I., “Operator tipa Shrëdingera nad polem $p$-adicheskikh chisel”, Teor. matem. fizika, 86:3 (1991), 323–333 | MR

[9] Kochubei A. I., “Operator differentsirovaniya na podmnozhestvakh polya $p$-adicheskikh chisel”, Izv. AN SSSR. Ser. matem., 56:5 (1992), 1021–1039 | MR | Zbl

[10] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Funktsionalnyi analiz, t. 1, Mir, M., 1977 ; Анализ операторов, т. 4, Мир, М., 1982 | MR | MR