On strengthening K.~Strebel's convergence theorem
Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 591-606.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a study of the behavior of complex characteristics for locally uniform convergence of quasiconformal mappings. The main result strengthens Strebel's convergence theorem, and one of the corollaries contains, in particular, a well-known theorem of Bers and Bojarski. An assertion about the sharpness of the result is also given.
@article{IM2_1993_40_3_a5,
     author = {V. I. Ryazanov},
     title = {On strengthening {K.~Strebel's} convergence theorem},
     journal = {Izvestiya. Mathematics },
     pages = {591--606},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a5/}
}
TY  - JOUR
AU  - V. I. Ryazanov
TI  - On strengthening K.~Strebel's convergence theorem
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 591
EP  - 606
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a5/
LA  - en
ID  - IM2_1993_40_3_a5
ER  - 
%0 Journal Article
%A V. I. Ryazanov
%T On strengthening K.~Strebel's convergence theorem
%J Izvestiya. Mathematics 
%D 1993
%P 591-606
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a5/
%G en
%F IM2_1993_40_3_a5
V. I. Ryazanov. On strengthening K.~Strebel's convergence theorem. Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 591-606. http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a5/

[1] Strebel K., “Ein Konvergenzsatz fur Folgen quasikonformen Abbildungen”, Comment. Math. Helv., 44:4 (1969), 469–475 | DOI | MR | Zbl

[2] Lehto O., Virtanen K., Quasikonforme Abbildungen, Springer, Berlin, 1965 | MR | Zbl

[3] Boyarskii B. V., “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43(85) (1957), 451–503 | MR

[4] Ryazanov V. I., “Nekotorye voprosy skhodimosti i kompaktnosti dlya kvazikonformnykh otobrazhenii”, DAN USSR, 1982, no. 6, 24–26 | MR | Zbl

[5] Ryazanov V. I., “Nekotorye voprosy skhodimosti i kompaktnosti dlya kvazikonformnykh otobrazhenii”, Teoriya otobrazhenii i priblizhenie funktsii, Sb. nauch. tr., Nauk. dumka, Kiev, 1983, 50–62 | MR

[6] Ryazanov V. I., “Some questions of convergence and compactness for quasiconformal mappings”, Amer. Math. Soc. Transl., 131(2), 1986, 7–19

[7] Ryazanov V. I., Teorema zamykaniya i kriterii kompaktnosti dlya obschikh klassov kvazikonformnykh otobrazhenii, Rukopis dep. v VINITI, No 1874-82 Dep., DonGU, Donetsk, 1982

[8] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[9] Kuratovskii K., Topologiya, t. I, Mir, M., 1966 | MR

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[11] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[12] Castain Ch., Valadier M., “Convex Analysis and Measurable Multifunctions”, Lect. Notes Math., 580, 1977, 1–278 | MR

[13] Saks S., Teoriya integrala, IL, M., 1949

[14] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I. i dr., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[15] Ryazanov V. I., Invariantno-krainie tochki i skhodimost kvazikonformnykh otobrazhenii, Preprint 90.02, IPMM AN USSR, Donetsk, 1990

[16] Leschinger K., Untersuchungen über Jacobi-Determinanten von zweidimensionalen quasikonformen Abbildungen, Inaugural-Dissertation zur Erlangung des Doktorgrades der Hohen Mathem.-Naturw. Fakultät der Rheinischen Friedrich-Wilhelms-Universität, Bonn, 1974; Bonner Mathematische Schriften, No. 72, Mathematisches Institut, Universität Bonn, Bonn, 1974 | MR | Zbl

[17] Uryson P. S., “Sur les classes $\mathscr(L)$ de M. Frechet”, Ens. Math., 25 (1926), 77–83

[18] Uryson P. S., Trudy po topologii i drugim oblastyam matematiki, t. 2, GITTL, M., L., 1951 | MR

[19] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[20] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[21] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948

[22] Ryazanov V. I., “O skhodimosti kharakteristik kvazikonformnykh otobrazhenii”, Ukr. matem. zhurn., 38:2 (1986), 200–204 | MR | Zbl

[23] Ryazanov V. I., “On necessary and sufficient condition for convergence of complex dilatations”, Stud. Math. Bulg., 10, Pliska, 1989, 39–44 | MR | Zbl

[24] Ryazanov V. I., Teoremy skhodimosti i kompaktnosti dlya kvazikonformnykh otobrazhenii i ikh prilozheniya, Dis. $\dots$ kand. fiz.-matem. nauk, IPMM AN USSR, Donetsk, 1982, 94