A function theorety method in elliptic problems in the plane. II.~The piecewise smooth case
Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 529-563.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general boundary value problem, encompassing from a unified viewpoint a broad circle of local and nonlocal boundary value problems, is studied for elliptic systems with real, constant (and only leading) matrix coefficients. A method is given for the equivalent reduction of this problem to a system of boundary equations. The considerations are carried out in domains with piecewise smooth boundaries and in weighted spaces. A Noetherian criterion and an index formula for this problem are established, and the asymptotics of its solution in a neighborhood of corner points is described.
@article{IM2_1993_40_3_a3,
     author = {A. P. Soldatov},
     title = {A function theorety  method in elliptic problems in the plane. {II.~The} piecewise smooth case},
     journal = {Izvestiya. Mathematics },
     pages = {529--563},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a3/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - A function theorety  method in elliptic problems in the plane. II.~The piecewise smooth case
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 529
EP  - 563
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a3/
LA  - en
ID  - IM2_1993_40_3_a3
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T A function theorety  method in elliptic problems in the plane. II.~The piecewise smooth case
%J Izvestiya. Mathematics 
%D 1993
%P 529-563
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a3/
%G en
%F IM2_1993_40_3_a3
A. P. Soldatov. A function theorety  method in elliptic problems in the plane. II.~The piecewise smooth case. Izvestiya. Mathematics , Tome 40 (1993) no. 3, pp. 529-563. http://geodesic.mathdoc.fr/item/IM2_1993_40_3_a3/

[1] Soldatov A. P., “Metod teorii funktsii v ellipticheskikh zadachakh na ploskosti. I: Gladkii sluchai”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1070–1100

[2] Radon I., “O kraevykh zadachakh dlya logarifmicheskogo potentsiala”, UMN, 1946, no. 1, 96–124 | MR | Zbl

[3] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975 | MR

[4] Magnaradze L. G., “Osnovnye zadachi ploskoi teorii uprugosti dlya konturov s uglovymi tochkami”, Tr. Tbilissk. matem. in-ta, 4, 1938, 43–76 | Zbl

[5] Lopatinskii Ya. B., Teoriya obschikh granichnykh zadach, Nauk. dumka, Kiev, 1984 | MR

[6] Volfersdorf L., “O singulyarnoi ellipticheskoi zadache Neimana dlya uravneniya Trikomi”, Izv. vuzov (matem.), 1962, no. 1, 14–19 | MR

[7] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[8] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[9] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[10] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966

[11] Vekua I. N., Novye metody reshenii ellipticheskikh uravnenii, Gostekhizdat, M., L., 1948

[12] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1967, 202–292

[13] Mazya V. G., Plamenevskii B. A., “Ellipticheskie kraevye zadachi na mnogoobraziyakh s osobennostyami”, Probl. matem. analiza, no. 6, LGU, 1977, 85–145

[14] Grisvard P., Elliptic problems in nonsmooth domains, Pitman, Boston, 1985 | MR | Zbl

[15] Dauge M., Elliptic boundary value problems on corner domains, Lecture Notes in Mathem., 1341, Springer-Verlag, 1988 | MR | Zbl

[16] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, UMN, 38:2(230) (1983), 3–76 | MR

[17] Mazya V. G., “Granichnye integralnye uravneniya”, Itogi nauki i tekhn. Sovr. probl. matem., 27, VINITI, M., 1988, 131–288 | MR

[18] Soldatov A. P., Singulyarnye integralnye operatory i kraevye zadachi teorii funktsii, Vyssh. shkola, M., 1991 | MR | Zbl

[19] Soldatov A. P., “Obschaya kraevaya zadacha $(k-1)$-go poryadka dlya ellipticheskikh uravnenii”, DAN SSSR, 311:1 (1990), 39–43 | MR | Zbl

[20] Soldatov A. P., “Obschaya kraevaya zadacha dlya ellipticheskikh sistem”, DAN SSSR, 311:3 (1990), 539–543 | MR | Zbl

[21] Soldatov A. P., “Asimptotika reshenii kraevykh zadach dlya ellipticheskikh sistem vblizi uglovykh tochek”, DAN SSSR, 315:1 (1990), 34–36 | MR | Zbl

[22] Soldatov A. P., Kraevye zadachi teorii funktsii v oblastyakh s kusochno gladkoi granitsei. Ch. I, II., TGU, Tbilisi, 1991 | MR

[23] Soldatov A. P., “Ellipticheskie sistemy vysokogo poryadka”, Differents. uravn., 25:1 (1989), 136–144 | MR | Zbl

[24] Soldatov A. P., “Granichnye svoistva integralov tipa Koshi”, Differents. uravn., 26:1 (1990), 131–136 | MR | Zbl

[25] Soldatov A. P., “Kategoriya dvoistvennosti v teorii nëterovykh operatorov”, Differents. uravn., 15:3 (1979), 529–544 | MR | Zbl

[26] Maltsev A. I., Osnovy lineinoi algebry, Nauka, M., 1970