On~the~structure of the fundamental group of the complement of algebraic curves in $\mathbf C^2$
Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 443-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the fundamental group of the complement of an algebraic curve $D=\bigcup D_i$, in $\mathbf C^2$. It is proved that $\pi_1(\mathbf C^2\setminus D)$ decomposes into the direct product of the groups $\pi_1(\mathbf C^2\setminus D_i)$ if for all $i$ and $j$, $i\not= j$, the curves $D_i$ and $D_j$ do not intersect at infinity and in a neighborhood of any point of $D_i\cap D_j$ the curve $D$ is a divisor with normal crossings.
@article{IM2_1993_40_2_a6,
     author = {Vik. S. Kulikov},
     title = {On~the~structure of the fundamental group of the complement of algebraic curves in $\mathbf C^2$},
     journal = {Izvestiya. Mathematics },
     pages = {443--454},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a6/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On~the~structure of the fundamental group of the complement of algebraic curves in $\mathbf C^2$
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 443
EP  - 454
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a6/
LA  - en
ID  - IM2_1993_40_2_a6
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On~the~structure of the fundamental group of the complement of algebraic curves in $\mathbf C^2$
%J Izvestiya. Mathematics 
%D 1993
%P 443-454
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a6/
%G en
%F IM2_1993_40_2_a6
Vik. S. Kulikov. On~the~structure of the fundamental group of the complement of algebraic curves in $\mathbf C^2$. Izvestiya. Mathematics , Tome 40 (1993) no. 2, pp. 443-454. http://geodesic.mathdoc.fr/item/IM2_1993_40_2_a6/

[1] Kulikov Vik. S., “Fundamentalnaya gruppa dopolneniya k giperpoverkhnosti v $\mathbf C^n$”, Izv. AN SSSR. Ser. matem., 55:2 (1991), 407–428 | MR | Zbl

[2] Nori M., “Zariski's conjecture and related problems”, Ann. Sci. Ec. Norm. Sup. Ser. 4, 16 (1983), 305–344 | MR | Zbl