Absorbed and nonabsorbed points of sets of attainability of differential inclusions, and generalized Hamilton--Jacobi equations
Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 213-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems considered in this article are in a certain sense alternative to the problem of invariance, namely, they concern conditions under which a particular point $x^*$ belonging at time $t^*$ to the set of attainability $X(t^*)$ of an autonomous differential inclusion $\dot x\in F(x)$ does or does not belong to the sets of attainability $X(t)$ for all $t$ in some sufficiently small interval adjacent to $t^*$ from the right or left. The conditions obtained are used to derive generalized equations of Hamilton–Jacobi type describing the boundaries of the phase and integral funnels of the differential inclusion, as well as the optimal result function and the fast-action time in an optimal control problem.
@article{IM2_1993_40_1_a5,
     author = {A. V. Bogatyrev},
     title = {Absorbed and nonabsorbed points of sets of attainability  of differential inclusions, and generalized {Hamilton--Jacobi} equations},
     journal = {Izvestiya. Mathematics },
     pages = {213--224},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a5/}
}
TY  - JOUR
AU  - A. V. Bogatyrev
TI  - Absorbed and nonabsorbed points of sets of attainability  of differential inclusions, and generalized Hamilton--Jacobi equations
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 213
EP  - 224
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a5/
LA  - en
ID  - IM2_1993_40_1_a5
ER  - 
%0 Journal Article
%A A. V. Bogatyrev
%T Absorbed and nonabsorbed points of sets of attainability  of differential inclusions, and generalized Hamilton--Jacobi equations
%J Izvestiya. Mathematics 
%D 1993
%P 213-224
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a5/
%G en
%F IM2_1993_40_1_a5
A. V. Bogatyrev. Absorbed and nonabsorbed points of sets of attainability  of differential inclusions, and generalized Hamilton--Jacobi equations. Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 213-224. http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a5/

[1] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Topologiya, obyknovennye differentsialnye uravneniya, dinamicheskie sistemy, Sb. obzornykh statei, 2. K 50-letiyu Instituta, Tr. MIAN SSSR, 169, Nauka, M., 1985, 194–252 | MR | Zbl

[2] Aubin J.-P., Cellina A., Differential inclusions, Springer-Verlag, N.Y., 1984 | MR

[3] Panasyuk A. I., Panasyuk V. I., “Ob odnom uravnenii, porozhdaemom differentsialnym vklyucheniem”, Matem. zametki, 27:3 (1980), 429–437 | MR | Zbl

[4] Ornelas A., “Parametrizations of Caratheodory Malfunctions”, Rend. del Sem. Mat. della Univ. Padova, 83 (1990), 33–44 | MR | Zbl

[5] Bogatyrëv A. V., Pyatnitskii E. S., “Postroenie kusochno kvadratichnykh funktsii Lyapunova dlya nelineinykh sistem”, Avtomatika i telemekhanika, 1987, no. 10, 30–38 | MR | Zbl

[6] Polovinkin E. S., Teoriya mnogoznachnykh otobrazhenii, MFTI, M., 1983

[7] Vutkovskii A. G., Fazovye portrety upravlyaemykh dinamicheskikh sistem, Nauka, M., 1985 | MR

[8] Subbotin A. I., Subbotina N. N., “Svoistva potentsiala differentsialnoi igry”, Prikladnaya matematika i mekhanika, 46:2 (1982), 204–211 | MR | Zbl

[9] Guseinov X. G., Proizvodnye slabo i silno invariantnykh mnozhestv i ikh primenenie k zadacham upravleniya, Dep. VINITI No 8155-V86, 1986 | Zbl

[10] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[11] “Franrowska H.”, Appl. Math. Optim., 19:3 (1989), 291–311 | DOI | MR | Zbl

[12] Vinter R., Wolenski P., “Hamilton–Jacobi theory for optimal control problem with data measurable in time”, SIAM J. Control and Optimization, 28:6 (1990), 1404–1419 | DOI | MR | Zbl

[13] Subbotin A. I., “Generalization of the main of differential game”, J. Optim. Theory Appl., 43:1 (1984), 103–133 | DOI | MR | Zbl

[14] Subbotin A. I., Subbotina N. N., “Neobkhodimye i dostatochnye usloviya dlya kusochno gladkoi tseny igry”, DAN SSSR, 243:4 (1978), 862–865 | MR | Zbl

[15] Grandal M. G., Lions P.-L., “Viscosity solution of Hamilton–Jacobi equation”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR

[16] Komarov V. A., “Uravnenie dinamicheskogo programmirovaniya dlya zadachi bystrodeistviya s fazovymi ogranicheniyami”, Matem. sb., 135:1 (1988), 46–58 | Zbl