Three-fold log flips
Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 95-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that 3-fold log flips exist. We deduce the existence of log canonical and $\mathbf Q$-factorial log terminal models, as well as a positive answer to the inversion problem for log canonical and log terminal adjunction.
@article{IM2_1993_40_1_a3,
     author = {V. V. Shokurov},
     title = {Three-fold log flips},
     journal = {Izvestiya. Mathematics },
     pages = {95--202},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a3/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - Three-fold log flips
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 95
EP  - 202
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a3/
LA  - en
ID  - IM2_1993_40_1_a3
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T Three-fold log flips
%J Izvestiya. Mathematics 
%D 1993
%P 95-202
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a3/
%G en
%F IM2_1993_40_1_a3
V. V. Shokurov. Three-fold log flips. Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 95-202. http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a3/

[1] Mori S., “On 3-dimensional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | MR | Zbl