On~the~Cauchy problem for differential equations in spaces of resurgent functions
Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 67-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method is proposed for obtaining asymptotic expansions of the solutions of a wide class of equations, taking subdominant, i.e., exponentially small, terms into account. The method is based on the study of the problem in special spaces of multiple-valued analytic functions.
@article{IM2_1993_40_1_a2,
     author = {B. Yu. Sternin and V. E. Shatalov},
     title = {On~the~Cauchy problem for differential equations in spaces of resurgent functions},
     journal = {Izvestiya. Mathematics },
     pages = {67--94},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a2/}
}
TY  - JOUR
AU  - B. Yu. Sternin
AU  - V. E. Shatalov
TI  - On~the~Cauchy problem for differential equations in spaces of resurgent functions
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 67
EP  - 94
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a2/
LA  - en
ID  - IM2_1993_40_1_a2
ER  - 
%0 Journal Article
%A B. Yu. Sternin
%A V. E. Shatalov
%T On~the~Cauchy problem for differential equations in spaces of resurgent functions
%J Izvestiya. Mathematics 
%D 1993
%P 67-94
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a2/
%G en
%F IM2_1993_40_1_a2
B. Yu. Sternin; V. E. Shatalov. On~the~Cauchy problem for differential equations in spaces of resurgent functions. Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 67-94. http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a2/

[1] Dobrokhotov S. Yu., Kolokoltsev V. N., Maslov V. P., “Raspredelenie nizhnikh urovnei uravneniya Shredingera i eksponentsialnaya asimptotika fundamentalnogo resheniya uravneniya $h\,\partial u/\partial t=h^2\Delta u-V(x)u$”, TMF, 87:3 (1991), 323–375 | MR | Zbl

[2] Balyan B., Block C., “Solution of the Schrödinger equation in terms of classical path”, Ann. of Physics, 85 (1974), 514–545 | DOI | MR

[3] Sternin B. Yu., Shatalov V. E., “Differentsialnye uravneniya na kompleksno-analiticheskikh mnogoobraziyakh i kanonicheskii operator Maslova”, UMN, 43:3 (1988), 99–124 | MR

[4] Ecalle J., Les fonctions résurgents, Publ. Math. Université Paris-Sud, Paris, 1981, 3 tomes

[5] Ecalle J., Singularitiés irréguliéries et résurgence multiple, in ching applications des fonctions résurgents, Preprint 89T62, Orsay, 1984

[6] Berry M. V., Howls C. J., “Hyperasymptotics for integrals with soddes”, Proc. Roy. Sci. Lond., 1991 | MR

[7] Candelpergher B., “One introduction a la résurgence”, Gazette des Mathemacienc., 42 (1989), 36–64 | MR | Zbl

[8] Candelpergher B., Nosmas C, Pham F., Approche de la resurgence (livre a paractre), 1991

[9] Delabaere E., Bellinger H., Pham F., “Dévelopments semi-classiques exacts des niveaux d'energie d'un oscillateur à une dimension”, C.R. Acad. Sci. Paris, ser. I., 310 (1990), 141–146 | MR | Zbl

[10] Delabaere E., Bellinger H., Contribution a la résurgence quantique (Résurgence de Voros et Fonction spectra'e de iost), These de doctorant de Mathematiques, Sophie-Antipolis, 1991

[11] Jidoumou A. O., Modeles de résurgence parametrique: fonctions d'Airy et cilindroparabolic, These de doctorant de Mathematiques, Sophie-Antipolis, 1990

[12] Pham F., “Resurgence, analitized canonical transformations and multiinstanton expansions”, Algebraic Analysis, II (1988), 699–726 | MR

[13] Pham F., “Resurgence den theme de Huygens-Fresnel”, Publ. Math. del'IHES., 68 (1989), 77–90 | MR

[14] Pham F., “Fonctions résurgentes implicites”, C.R. Acad. Sci. Paris, ser. I, 309 (1989), 999–1001 | MR | Zbl

[15] Voros A., “The return of the quartic oscillator (the complex WKB method)”, Ann. Inst. H. Poincaré, 29:3 (1983) | MR

[16] Voros A., “Shrödinger equation from $O(h)$ to $O(h^\infty)$”, Path integrals from meV to MeV (Bielefeld, 1985), Bielfeld Encoutres in Physic and Mathematics, VII, World Sci. Publishing, Singapore, 1986, 173–195 | MR

[17] Ludwig D., “Exact and asymptotics solutions of the Cauchy problem”, Comm. Pure Appl. Math., 13 (1960), 473–508 | DOI | MR | Zbl

[18] Mishchenko A. S., Shatalov V. E., Sternin B. Yu., Lagrangian manifolds and the Maslov operator, Springer-Verlag, Berlin, Heidelberg, 1990 | MR

[19] Hörmander L., The analysis of linear partial differential operators. IV: Fourier integral operators, Springer-Verlag, Berlin, Heidelberg, 1985 | MR

[20] Sternin B. Yu., Shatalov V. E., “Laplace–Radon integral operators and singularities of solutions of differential equations on complex manifolds”, Lect. Notes in Math., 1334, 1988, 129–156 | MR | Zbl

[21] Sternin B. Yu., Shatalov V. E., “O nekotorom integralnom preobrazovanii kompleksnykh analiticheskikh funktsii”, Izv. AN SSSR. Ser. matem., 50:5 (1986), 1054–1076 | MR | Zbl

[22] Sternin B. Yu., Shatalov V. E., “O zadache Kopta v klassakh resurgentnykh funktsii”, DAN SSSR, 320:3 (1991), 551–555 | MR | Zbl

[23] Sternin B. Yu., Shatalov V. E., “O ponyatii elementarnogo resheniya v kompleksnoi teorii differentsialnykh uravnenii”, DAN SSSR, 320:4 (1991), 825–829 | MR | Zbl

[24] Leray J., “Le calcul différential et intégral sur une variété analytique complexe (Problème de Cauchy III)”, Bull. Soc. Math. France, 87 (1959), 81–180 | MR | Zbl

[25] Pham F., Introduction a l'étude topologique des singularités de Landau, Gauthièr-Villars Editeur, Paris, 1967 | MR | Zbl

[26] Milnor J., Singular points of complex hypersurfaces, Princeton Univ. Press, Princeton New Jersey, 1968 | MR | Zbl

[27] Thom R., “Les singularités des applications differentiables”, Ann. Inst. Fourier, 6 (1956), 43–87 | MR | Zbl

[28] Sternin B. Yu., Shatalov V. E., “On Leray's residue theory”, Lect. Notes in Math., 1453, 1990, 109–119 | MR | Zbl

[29] Sternin B. Yu., Shatalov V. E., “Asimptotiki reshenii differentsialnykh uravnenii na kompleksnykh mnogoobraziyakh”, Matem. sb., 137:3 (1988), 381–416 | MR

[30] Leray J., Hyperbolic equations, Inst. Adv. Study, Princeton, 1953