Semistable sheaves on a two-dimensional quadric, and Kronecker modules
Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 33-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies the connection between semistable sheaves on $\mathbf P^1\times\mathbf P^1$ that are represented as the cokernel of an injective morphism $E_1\otimes\mathbf C^m\to E_2\otimes\mathbf C^n$, where $E_1$ and $E_2$ are exceptional bundles, and semistable Kronecker modules $\mathbf C^m\otimes\operatorname{Hom}(E_1,E_2)^*\to\mathbf C^n$. He obtains sufficient conditions on the topological invariants of the sheaves for the moduli space of semistable sheaves and the corresponding Kronecker moduli space to coincide. This gives important geometric information concerning the moduli spaces of the bundles.
@article{IM2_1993_40_1_a1,
     author = {B. V. Karpov},
     title = {Semistable sheaves on a two-dimensional quadric, and {Kronecker} modules},
     journal = {Izvestiya. Mathematics },
     pages = {33--66},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a1/}
}
TY  - JOUR
AU  - B. V. Karpov
TI  - Semistable sheaves on a two-dimensional quadric, and Kronecker modules
JO  - Izvestiya. Mathematics 
PY  - 1993
SP  - 33
EP  - 66
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a1/
LA  - en
ID  - IM2_1993_40_1_a1
ER  - 
%0 Journal Article
%A B. V. Karpov
%T Semistable sheaves on a two-dimensional quadric, and Kronecker modules
%J Izvestiya. Mathematics 
%D 1993
%P 33-66
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a1/
%G en
%F IM2_1993_40_1_a1
B. V. Karpov. Semistable sheaves on a two-dimensional quadric, and Kronecker modules. Izvestiya. Mathematics , Tome 40 (1993) no. 1, pp. 33-66. http://geodesic.mathdoc.fr/item/IM2_1993_40_1_a1/

[1] Bondal A. I., Corodentsev A. L., “On the Functors $\mathrm{Ext}^{\boldsymbol\cdot}$ Applied to Exceptional Bundles on $\mathbf{P}^2$”, Helices and vector bundles, London Math. Society Lecture Note Series, 148, Cambridge Univ. Press, Cambridge, 1990, 39–44 | MR

[2] Gorodentsev A. P., “Isklyuchitelnye rassloeniya na poverkhnostyakh s podvizhnym antikanonicheskim klassom”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 740–757 | MR

[3] Gorodentsev A. L., Rudakov A. N., “Exceptional vector bundles on the projective spaces”, Duke Math. Journal, 54:1 (1987), 115–130 | DOI | MR | Zbl

[4] Drezet J.-M., Le Potier J., “Fibrés stables et fibrés exceptionnels sur $\mathbf{P}_2$”, Ann. Scient. Ec. Norm. Sup. Serie 4, 18 (1985), 193–244 | MR

[5] Drezet J.-M., “Fibrés exceptionnels et suite spectrale de Beilinson géneralisée sur $\mathbf{P}_2(\mathbf{C})$”, Math. Ann., 275:1 (1986), 25–48 | DOI | MR | Zbl

[6] Drezet J.-M., “Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur $\mathbf{P}_2(\mathbf{C})$”, J. Reine Angew. Math., 380 (1987), 14–58 | MR | Zbl

[7] Rudakov A. N., A description of Chern classes of semistables sheaves on a quadric surface, Forschungsschwerpunkt Komplexe Mannigfaltigkeiten Schriftenreine Heft, no. 88, 1990 | Zbl

[8] Rudakov A. H., “Isklyuchitelnye rassloeniya na kvadrike”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 788–812 | MR | Zbl