Some properties of the complexification of the KdV equation
Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1251-1261.

Voir la notice de l'article provenant de la source Math-Net.Ru

An integrable complexification of the hierarchy of the KdV equation is constructed. A countable set of first integrals is found, along with the evolution of the scattering data for the complexification of the KdV equation obtained in [1]. Hirota's method is used to obtain some exact solutions of this equation. A representation of the complexification of the KdV equation as an equation of zero curvature is indicated.
@article{IM2_1992_39_3_a7,
     author = {T. V. Red'kina},
     title = {Some properties of the complexification of the {KdV} equation},
     journal = {Izvestiya. Mathematics },
     pages = {1251--1261},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a7/}
}
TY  - JOUR
AU  - T. V. Red'kina
TI  - Some properties of the complexification of the KdV equation
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1251
EP  - 1261
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a7/
LA  - en
ID  - IM2_1992_39_3_a7
ER  - 
%0 Journal Article
%A T. V. Red'kina
%T Some properties of the complexification of the KdV equation
%J Izvestiya. Mathematics 
%D 1992
%P 1251-1261
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a7/
%G en
%F IM2_1992_39_3_a7
T. V. Red'kina. Some properties of the complexification of the KdV equation. Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1251-1261. http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a7/

[1] Bogoyavlenskii O. I., “Oprokidyvayuschiesya solitony. III”, Izv. AN SSSR. Ser. matem., 54:1 (1989), 123–131 | MR

[2] Laks P. D., “Integraly nelineinykh evolyutsionnykh uravnenii i uedinennoi volny”, Matematika, 13:5 (1968), 128–150

[3] Zakharov V. E., Shabat A. B., “Skhema integrirovaniya nelineinykh evolyutsionnykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego prilozh., 8:3 (1974), 43–53 | MR | Zbl

[4] Zakharov V. E., Manakov S. V., “Teoriya rezonansnogo vzaimodeistviya volnovykh paketov v nelineinykh sredakh”, Pisma v ZhETF, 69 (1975), 1654–1673 | MR

[5] Iwasaki K., “Scattering theory for 4-th order differential operators. I, II”, Journ. Mathem. Japan, 22:1 (1988), 1–97 | MR

[6] S. P. Novikov (ed.), Teoriya solitonov, Nauka, M., 1980 | MR

[7] Ablowitz M. J., Segur H., “Exact linearization of a Panileve transcendent”, Phys. Rev. Lett., 38 (1977), 1103–1106 | DOI | MR

[8] Hirota R., “Nonlinear partial difference equations. V. Nonlinear equations reducible to linear equations”, Journ. Phys. Soc. Japan, 46 (1979), 312–319 | DOI | MR

[9] Fordy A. P., Gibbons J., “Factorization of oparators. I. Miura transformations”, Journ. Mathem. Phys., 21:10 (1980), 2508–2510 | DOI | MR | Zbl

[10] Nyuell A., Solitony v matematike i fizike, per. s angl., Mir, M., 1989 | MR