An integrable system extending the Korteweg--de~Vries equation
Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1239-1250.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some exact solutions are found for a system of two nonlinear equations admitting a Lax representation. The dynamics of the scattering data of a fourth-order operator of a special form is indicated, and the system is shown to possess a countable set of first integrals.
@article{IM2_1992_39_3_a6,
     author = {D. Fofana},
     title = {An integrable system extending the {Korteweg--de~Vries} equation},
     journal = {Izvestiya. Mathematics },
     pages = {1239--1250},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a6/}
}
TY  - JOUR
AU  - D. Fofana
TI  - An integrable system extending the Korteweg--de~Vries equation
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1239
EP  - 1250
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a6/
LA  - en
ID  - IM2_1992_39_3_a6
ER  - 
%0 Journal Article
%A D. Fofana
%T An integrable system extending the Korteweg--de~Vries equation
%J Izvestiya. Mathematics 
%D 1992
%P 1239-1250
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a6/
%G en
%F IM2_1992_39_3_a6
D. Fofana. An integrable system extending the Korteweg--de~Vries equation. Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1239-1250. http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a6/

[1] Bogoyavlenskii O. I., “Oprokidyvayuschiesya solitony v dvumernykh integriruemykh uravneniyakh”, UMN, 45:4 (1990), 17–77 | MR | Zbl

[2] Manakov S. V., “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5 (1976), 245–246 | MR | Zbl

[3] Melnikov V. K., “Ob uravneniyakh, porozhdennykh operatornym sootnosheniem”, Matem. sb., 108 (1979), 379–392 | MR

[4] Iwasaki K., “Scattering theorie for 4-th order differential operator. I”, Japan. J. Math., 14:1 (1988), 1–57 | MR | Zbl

[5] S. P. Novikov (ed.), Teoriya solitonov, Nauka, M., 1980 | MR

[6] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989 | MR

[7] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[8] R. Bullaf, F. M. Kodri (eds.), Solitony, Mir, M., 1983

[9] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, 13-e izd. dop. i pererab., Nauka, M., 1984 | MR | Zbl