Generalized functions on a Non-Archimedean superspace
Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1209-1238.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theory is developed for superanalytic generalized functions on a superspace over a non-Archimedean Banach superalgebra with trivial annihilator of the odd part. A Gaussian distribution and the Volkenborn distribution are introduced on the non-Archimedean superspace. Existence and uniqueness theorems are proved for the Cauchy problem for linear differential equations with variable coefficients. The Cauchy problem for non-Archimedean superdiffusion, the Schrödinger equation, and the Schrodinger equation for supersymmetric quantum mechanics on a non-Archimedean Riemann surface are considered as applications.
@article{IM2_1992_39_3_a5,
     author = {A. Yu. Khrennikov},
     title = {Generalized functions on a {Non-Archimedean} superspace},
     journal = {Izvestiya. Mathematics },
     pages = {1209--1238},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a5/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Generalized functions on a Non-Archimedean superspace
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1209
EP  - 1238
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a5/
LA  - en
ID  - IM2_1992_39_3_a5
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Generalized functions on a Non-Archimedean superspace
%J Izvestiya. Mathematics 
%D 1992
%P 1209-1238
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a5/
%G en
%F IM2_1992_39_3_a5
A. Yu. Khrennikov. Generalized functions on a Non-Archimedean superspace. Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1209-1238. http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a5/

[1] Vladimirov V. S, Volovich I. V., “Superanaliz. I. Differentsialnoe ischislenie”, TMF, 59:1 (1984), 3–27 | MR | Zbl

[2] Volovich I. V., Number theory as the ultimate physical theory, Preprint CBRN TH. 4781/87, Geneva, 1987

[3] Volovich I. V., “$p$-adic string”, Class. Quant. Grav., 4 (1987), 83–87 | DOI | MR

[4] Grossman B., “$p$-adic string, the Weyl conjectures and anomalies”, Phys. Lett. B, 197 (1987), 101–106 | DOI | MR

[5] Freund P. G. O., Olson M., “Non-archimedean strings”, Phys. Lett. B, 199 (1987), 186–190 | DOI | MR

[6] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B, 199 (1987), 191–195 | DOI | MR

[7] Frampton P. H., Okada Y., “$p$-adic string $N$-point function”, Phys. Rev. Lett., 60 (1988), 484–486 | DOI | MR

[8] Vladimirov V. S., Volovich I. V., “$p$-adic quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl

[9] Volovich I. V., “$p$-adicheskoe prostranstvo-vremya i strunnaya teoriya”, TMF, 71:3 (1987), 337–340 | MR | Zbl

[10] Vladimirov V. S, Volovich I. V., “$p$-adicheskaya kvantovaya mekhanika”, DAN SSSR, 302:2 (1988), 320–323

[11] Frampton P. H., Volovich I. V., “Cosmogenesis and primary quantization”, Phys. Rev., 1991, no. 3, 6–36

[12] Dragovic B. G., Frampton P. H., Urosevic B. V., “Classical p-adic space-time”, Modern Phys. Lett. A, 5:19 (1990), 1521–1528 | DOI | MR | Zbl

[13] Zelenov E. I., “$p$-adicheskaya kvantovaya mekhanika dlya $p=2$”, TMF, 80:2 (1989), 253–263 | MR

[14] Aref'eva I. Ya., Dragovic B. G., Frampton P. H., Volovich I. V., “Wave function of universe and $p$-adic gravity”, Int. J. Mod. Phys., 1991, no. 4, 5–25 | MR

[15] Khrennikov A. Yu., “Kvantovaya mekhanika nad nearkhimedovymi chislovymi polyami”, TMF, 83:3 (1990), 406–418 | MR

[16] Khrennikov A. Yu., “Funktsionalnyi superanaliz”, UMN, 43:2 (1988), 87–114 | MR | Zbl

[17] Volovich I. V., “$\Lambda$-supermnogoobraziya i rassloeniya”, DAN SSSR, 269:3 (1983), 524–528 | MR

[18] Vladimirov V. S, Volovich I. V., “Superanaliz. II. Differentsialnoe ischislenie”, TMF, 60:2 (1984), 169–198 | MR | Zbl

[19] Rogers A., “Super Lie groups: global topology and local structure”, J. Math. Phys., 21:6 (1980), 724–731 | DOI | MR

[20] Rogers A., “A global theory of supermanifolds”, J. Math. Phys., 22:5 (1981), 939–945 | DOI | MR | Zbl

[21] De Witt B. S., Supermanifolds, Cambridge, 1984

[22] Schwinger J. A., “A Note of the Quantum Dinamical Principle”, Phil. Mag., 44:3 (1953), 1171–1193 | MR

[23] Schwinger J. A., “The theory of Quantized Fields”, Phys. Rev., 82:6 (1951), 1–30 | DOI | MR

[24] Martin J. L., “Generalized classical dynamics and the “classical analogue” of a Fermi oscillator”, Proc. Roy. Soc., A–251:1267 (1959), 533–543 | MR

[25] Martin J. L., “The Feynman principle for a Fermi system”, Proc. Roy. Soc., A–251:1267 (1959), 543–549 | MR | Zbl

[26] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[27] Salam A., Strathdee F., “Super-gauge transformations”, Nucl. Phys., B–76:3 (1974), 477–482 | DOI | MR

[28] Rogers A., “Consistent superspace integration”, J. Math. Phys., 26:3 (1985), 385–392 | DOI | MR | Zbl

[29] Rogers A., “Fermionic path integration and Grassmann Brownian Motion”, Commun. Math. Phys., 113 (1987), 353–368 | DOI | MR | Zbl

[30] Khrennikov A. Yu., “Superanaliz: teoriya obobschennykh funktsii i psevdodifferentsialnykh operatorov”, TMF, 73:3 (1987), 420–429 | MR

[31] Khrennikov A. Yu., “Uravneniya na superprostranstve”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 576–606 | MR

[32] Nagamachi S., Kobayashi Yu., “Usage on infinite-dimensional nuclear algebras in superanalysis”, Lett. Math. Phys., 14 (1987), 15–23 | DOI | MR | Zbl

[33] Nagamachi S., Kobayashi Yu., “Analysis on generalized superspace”, J. Math. Phys., 27 (1986), 2247–2256 | DOI | MR | Zbl

[34] Nagamachi S., Kobayashi Yu., “Generalized complex superspace – Involutions of superfields”, J. Math. Phys., 28 (1987), 1700–1708 | DOI | MR | Zbl

[35] Khrennikov A. Yu., “Psevdotopologicheskie kommutativnye superalgebry s nilpotentnymi dukhami”, Matem. zametki, 48:2 (1990), 114–122 | MR | Zbl

[36] Khrennikov A. Yu., “Psevdodifferentsialnye uravneniya v funktsionalnom superanalize. I. Metod preobrazovaniya Fure”, Differents. uravn., 24:12 (1988), 2144–2157 | MR

[37] Khrennikov A. Yu., “Psevdodifferentsialnye uravneniya v funktsionalnom superanalize. II. Formula Feinmana–Katsa”, Differents. uravn., 25:2 (1989), 505–514 | MR | Zbl

[38] Nagamachi S., Kobayashi Yu., “Superdistributions”, Lett. Math. Phys., 15 (1988), 17–26 | DOI | MR | Zbl

[39] Khrennikov A. Yu., “Printsip sootvetstviya v kvantovykh teoriyakh polya i relyativistskoi bozonnoi struny”, Matem. sb., 180:6 (1989), 763–786 | MR

[40] Khrennikov A. Yu., “Tsentralnaya predelnaya teorema dlya kvazigaussovskogo raspredeleniya na beskonechnomernom superprostranstve”, Teoriya veroyatn. i ee primeneniya, 35:3 (1990), 599–602 | MR

[41] Khrennikov A. Yu., “Formuly integrirovaniya po chastyam dlya feinmanovskikh i gaussovskikh raspredelenii na superprostranstve”, Izv. VUZov. Ser. matem., 1990, no. 4, 51–58 | MR | Zbl

[42] Ktitarev D. V., “Functional integral and the Feynman–Kac formular in superspace”, Lett. Math. Phys., 18 (1989), 325–331 | DOI | MR | Zbl

[43] Ktitarev D. V., “Functional integral in supersymmetric quantum mechanics”, Lett. Math. Phys., 20 (1990), 309–312 | DOI | MR | Zbl

[44] Escassut A., “$T$-filters, ensembles analytiques et transformation Fourier $p$-adique”, Ann. Inst. Fourier, 25:2 (1975), 45–80 | MR | Zbl

[45] Iwasawa K., Lectures on $p$-adic $L$-functions, Princeton Univ. Press, 1972 | MR | Zbl

[46] Lang S., Cyclotomic fields, Springer-Verlag, 1978 | MR

[47] Fresnel J., De Mathan B., “Sur la transformation de Fourier $p$-adique”, Séminaire de Théorie des Nombres (1972–1973), Centre Nat. Recherche Sci., 1973, 26 | MR

[48] Schikhov W.H., Non-Archimedean harmonic analysis, Catolic Univ. Nijmegen, 1967

[49] Khrennikov A. Yu., “Kvantovanie na nearkhimedovykh superprostranstvakh”, Tezisy dokladov shkoly-seminara “Aktualnye voprosy kompleksnogo analiza”, Tashkent, 1989, 129

[50] Khrennikov A. Yu., “Psevdodifferentsialnye operatory na nearkhimedovykh prostranstvakh”, Differents. uravn., 26:6 (1990), 1044–1053 | MR

[51] Khrennikov A. Yu., “Predstavleniya Shredingera i Bargmana–Foka v nearkhimedovoi kvantovoi mekhanike”, DAN SSSR, 313:2 (1990), 325–329 | MR | Zbl

[52] Khrennikov A. Yu., “Predstavlenie vtorichnogo kvantovaniya nad nearkhimedovymi chislovymi polyami”, DAN SSSR, 314:6 (1990), 1380–1384 | MR | Zbl

[53] Khrennikov A. Yu., “Kvantovaya mekhanika nad rasshireniyami Galua chislovykh polei”, DAN SSSR, 315:4 (1990), 860–864

[54] Khrennikov A. Yu., “Matematicheskie metody nearkhimedovoi fiziki”, UMN, 45:4 (1990), 79–110 | MR | Zbl

[55] Schikhof W. H., Ultrametric Calculus. Cambridge studies in advanced mathematics 4, Cambridge U. P., 1984 | MR | Zbl

[56] Endo M., “An extension of $p$-adic integration”, Commentarii Mat. Univ. Sancti Pauli, 32:1 (1983), 109–130 | MR | Zbl

[57] Morita Y., “A $p$-adic analogue of the $\Gamma$-function”, J. Fac. Sci. Univ. Tokyo. Sec. I A, 22 (1975), 255–266 | MR | Zbl

[58] Aref'eva I. Ya., Dragovic B. G., Volovich I. V., “On the p-adic summability of the anharmonic oscillator”, Phys. Lett. B, 200 (1988), 512–514 | DOI | MR

[59] Ivaschuk V. D., “Ob annulyatorakh v beskonechnomernykh banakhovykh algebrakh Grassmana”, TMF, 79:1 (1989), 31–40

[60] Monna A. F., Analyse non-archimedienne, U. P., Berlin, 1970 | MR

[61] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[62] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[63] Khrennikov A. Yu., “Formula Trottera dlya uravnenii teploprovodnosti i Shredingera na nearkhimedovom superprostranstve”, Sib. matem. zhurn., 1991, no. 4, 5–15 | MR

[64] Khrennikov A. Yu., “Veschestvenno-nearkhimedova struktura prostranstva-vremeni”, TMF, 86:2 (1991), 177–190 | MR | Zbl

[65] Peano G., “Integration par series des equations differentielles linearies”, Math. Ann., 32 (1888), 450–456 | DOI | MR

[66] Volterra V., “Sui fondamenti della teoria della equazioni differenziali lineari”, Mem. Soc. Ital. Sci. (3), 6 (1887), 1–104; 12 (1902), 3–68 | Zbl