Multiplicative functions on the set of shifted prime numbers
Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1189-1207.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the behavior of multiplicative functions on the set $\{p+a\}$, where $p$ is a prime and $a$ is a nonzero integer. Several results are obtained in which either the average value of a multiplicative function on this set is estimated or its asymptotic behavior is determined. As one application a nontrivial estimate of $$\sum\limits_{p\leqslant x}\chi_q(p+a)$$ is found, where $x\geqslant q^{1/4+\varepsilon}$, $q$ is a sufficiently large prime, and $\chi$ is a character of degree greater than 4.
@article{IM2_1992_39_3_a4,
     author = {N. M. Timofeev},
     title = {Multiplicative functions on the set of shifted prime numbers},
     journal = {Izvestiya. Mathematics },
     pages = {1189--1207},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a4/}
}
TY  - JOUR
AU  - N. M. Timofeev
TI  - Multiplicative functions on the set of shifted prime numbers
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1189
EP  - 1207
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a4/
LA  - en
ID  - IM2_1992_39_3_a4
ER  - 
%0 Journal Article
%A N. M. Timofeev
%T Multiplicative functions on the set of shifted prime numbers
%J Izvestiya. Mathematics 
%D 1992
%P 1189-1207
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a4/
%G en
%F IM2_1992_39_3_a4
N. M. Timofeev. Multiplicative functions on the set of shifted prime numbers. Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1189-1207. http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a4/

[1] Barban M. B., Vinogradov A. I., Levin B. V., “Predelnye zakony dlya klassa $H$ I. P. Kubilyusa, zadannykh na mnozhestve sdvinutykh prostykh chisel”, Litovskii matem. sb., 5:1 (1965), 5–7 | MR | Zbl

[2] Vinogradov I. M., “Otsenka odnoi summy, rasprostranennoi na prostye chisla arifmeticheskoi progressii”, Izv. AN SSSR. Ser. matem., 30 (1966), 481–496 | MR | Zbl

[3] Vinogradov I. M., “O granitse naimenshego nevycheta $n$-oi stepeni”, Izv. AN SSSR, XX:1 (1926), 47–58

[4] Vinogradov A. I., “O chislakh s malymi prostymi delitelyami”, DAN SSSR, 109:4 (1956), 683–686 | MR | Zbl

[5] Karatsuba A. A., “Summa kharakterov s prostymi chislami”, Izv. AN SSSR. Ser. matem., 34:2 (1970), 299–321 | Zbl

[6] Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR

[7] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[8] Timofeev N. M., “Raspredelenie znachenii additivnykh funktsii na posledovatelnosti $\{p+1\}$”, Matem. zametki, 33:6 (1983), 933–942 | MR | Zbl

[9] Timofeev N. M., “Gipoteza Erdesha–Kubilyusa o raspredelenii znachenii additivnykh funktsii na posledovatelnosti sdvinutykh prostykh chisel”, Acta Arithm., 58:2 (1991), 113–131 | MR | Zbl

[10] Burgess D. A., “On character sums and $L$-series. II”, Proc. London Math. Soc., 13(3) (1963), 524–536 | DOI | MR | Zbl

[11] Elliott P. D. T. A., Probabilistic Number Theory. I, Gründlehren der Math. Wissenschaften, 239, 1979 | MR | Zbl

[12] Elliott P. D. T. A., Probabilistic Number Theory. II, Gründlehren der Math. Wissenchaften, 240, 1980 | MR | Zbl

[13] Halasz G., “Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen”, Acta Math. Acad. Sci. Hung., 19 (1968), 365–403 | DOI | MR | Zbl

[14] Halberstam H., Richert H. E., Seive Methods, Academic Press, L., N.Y., 1974 | MR | Zbl

[15] Hildebrand A., “Additive and multiplicative functions on shifted primes”, Proc. London Math. Soc., 53:3 (1989), 209–232 | DOI | MR

[16] Katai I., “On distribution of additive arithmetical functions on the set of prime plus one”, Composition Math., 19 (1968), 278–289 | MR | Zbl

[17] Katai I., “Reseach problems in number theory”, Publ. Math., 24:3–4 (1977), 263–276 | MR | Zbl

[18] Meyer J., These d'Etat, Universite de Reins, 1982