Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood
Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1113-1128

Voir la notice de l'article provenant de la source Math-Net.Ru

The author discusses classes of periodic functions of $m$ variables that are either piecewise monotonic or piecewise monotonic in the sense of Hardy, and clarifies the connections, for such functions, between the property of belonging to $L_p$ space, $1$, and the convergence of series of their trigonometric Fourier coefficients, $$ \sum_{n_1,\dots ,\ n_m=-\infty}^{+\infty}\big|a_{n_1\dots n_m}\big|^\alpha \left(\prod_{j=1}^m(|n_j|+1)\right)^{\alpha-2}. $$ We establish the existence, when $m>1$, of certain results that differ from the one-dimensional case.
@article{IM2_1992_39_3_a1,
     author = {M. I. Dyachenko},
     title = {Piecewise monotonic functions of several variables and a theorem of {Hardy} and {Littlewood}},
     journal = {Izvestiya. Mathematics },
     pages = {1113--1128},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a1/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1113
EP  - 1128
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a1/
LA  - en
ID  - IM2_1992_39_3_a1
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood
%J Izvestiya. Mathematics 
%D 1992
%P 1113-1128
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a1/
%G en
%F IM2_1992_39_3_a1
M. I. Dyachenko. Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood. Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1113-1128. http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a1/