Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood
Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1113-1128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author discusses classes of periodic functions of $m$ variables that are either piecewise monotonic or piecewise monotonic in the sense of Hardy, and clarifies the connections, for such functions, between the property of belonging to $L_p$ space, $1$, and the convergence of series of their trigonometric Fourier coefficients, $$ \sum_{n_1,\dots ,\ n_m=-\infty}^{+\infty}\big|a_{n_1\dots n_m}\big|^\alpha \left(\prod_{j=1}^m(|n_j|+1)\right)^{\alpha-2}. $$ We establish the existence, when $m>1$, of certain results that differ from the one-dimensional case.
@article{IM2_1992_39_3_a1,
     author = {M. I. Dyachenko},
     title = {Piecewise monotonic functions of several variables and a theorem of {Hardy} and {Littlewood}},
     journal = {Izvestiya. Mathematics },
     pages = {1113--1128},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a1/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1113
EP  - 1128
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a1/
LA  - en
ID  - IM2_1992_39_3_a1
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood
%J Izvestiya. Mathematics 
%D 1992
%P 1113-1128
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a1/
%G en
%F IM2_1992_39_3_a1
M. I. Dyachenko. Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood. Izvestiya. Mathematics , Tome 39 (1992) no. 3, pp. 1113-1128. http://geodesic.mathdoc.fr/item/IM2_1992_39_3_a1/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] Dyachenko M. I., “O skhodimosti dvoinykh trigonometricheskikh ryadov i ryadov Fure s monotonnymi koeffitsientami”, Matem. sb., 129:1 (1986), 55–72 | MR

[3] Dyachenko M. I., “Konstanty Lebega yader Dirikhle monotonnogo tipa i skhodimost kratnykh trigonometricheskikh ryadov”, Matem. zametki, 44:6 (1988), 758–769 | MR

[4] D'jachenko M. I., “Multiple trigonometric series with lexicographically monotone coefficients”, Anal. Math., 16:3 (1990), 173–190 | DOI | MR

[5] Zigmund A., Trigonometricheskie ryady. V 2-kh t., t. 2, Mir, M., 1965 | MR

[6] Hunt R., Muckenhoupt B., Wheeden R., “Weighted norm inequalities for the conjugate functions and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl

[7] Zigmund A., Trigonometricheskie ryady. V 2-kh t., t. 1, Mir, M., 1965 | MR

[8] Herz C. S., “Fourier transforms related to convex sets”, Ann. Math. Ser. 2, 75:1 (1962), 81–92 | DOI | MR | Zbl