Differential operators of infinite order with symbols of Gevrey class
Izvestiya. Mathematics , Tome 39 (1992) no. 2, pp. 1085-1096.

Voir la notice de l'article provenant de la source Math-Net.Ru

Differential operators of infinite order with symbols that are infinitely differentiable functions (of Gevrey class) in some domain in $\mathbf R^n$ are considered. With the help of such operators a generalized Fourier transform of infinitely differentiable functions is constructed. For these operators a criterion for the of solvability of the Cauchy problem in some subclasses of exponential functions is proved. The results are similar to those of Dubinskii [1] for differential operators of infinite order with symbols analytic in some Runge domain in $\mathbf C^n$.
@article{IM2_1992_39_2_a6,
     author = {O. V. Odinokov},
     title = {Differential operators of infinite order with symbols of {Gevrey} class},
     journal = {Izvestiya. Mathematics },
     pages = {1085--1096},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a6/}
}
TY  - JOUR
AU  - O. V. Odinokov
TI  - Differential operators of infinite order with symbols of Gevrey class
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1085
EP  - 1096
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a6/
LA  - en
ID  - IM2_1992_39_2_a6
ER  - 
%0 Journal Article
%A O. V. Odinokov
%T Differential operators of infinite order with symbols of Gevrey class
%J Izvestiya. Mathematics 
%D 1992
%P 1085-1096
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a6/
%G en
%F IM2_1992_39_2_a6
O. V. Odinokov. Differential operators of infinite order with symbols of Gevrey class. Izvestiya. Mathematics , Tome 39 (1992) no. 2, pp. 1085-1096. http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a6/

[1] Dubinskii Yu. A., “Algebra psevdodifferentsialnykh operatorov s kompleksnymi argumentami i ee prilozheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 29, VINITI AN SSSR, M., 1986, 109–150 | MR

[2] Komatsu H., “Ultradistributions. I. Structure theorems and a characterization”, Journal Fac. Sci. Univ. Tokyo Sect. IA Math., 20:1 (1973), 25–105 | MR | Zbl

[3] Odinokov O. V., Differentsialnye operatory beskonechnogo poryadka i zadacha Koshi v kompleksnoi oblasti, Dis. $\dots$ kand. fiz.-matem. nauk, M., 1988