Differential operators of infinite order with symbols of Gevrey class
Izvestiya. Mathematics, Tome 39 (1992) no. 2, pp. 1085-1096
Cet article a éte moissonné depuis la source Math-Net.Ru
Differential operators of infinite order with symbols that are infinitely differentiable functions (of Gevrey class) in some domain in $\mathbf R^n$ are considered. With the help of such operators a generalized Fourier transform of infinitely differentiable functions is constructed. For these operators a criterion for the of solvability of the Cauchy problem in some subclasses of exponential functions is proved. The results are similar to those of Dubinskii [1] for differential operators of infinite order with symbols analytic in some Runge domain in $\mathbf C^n$.
@article{IM2_1992_39_2_a6,
author = {O. V. Odinokov},
title = {Differential operators of infinite order with symbols of {Gevrey} class},
journal = {Izvestiya. Mathematics},
pages = {1085--1096},
year = {1992},
volume = {39},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a6/}
}
O. V. Odinokov. Differential operators of infinite order with symbols of Gevrey class. Izvestiya. Mathematics, Tome 39 (1992) no. 2, pp. 1085-1096. http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a6/
[1] Dubinskii Yu. A., “Algebra psevdodifferentsialnykh operatorov s kompleksnymi argumentami i ee prilozheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 29, VINITI AN SSSR, M., 1986, 109–150 | MR
[2] Komatsu H., “Ultradistributions. I. Structure theorems and a characterization”, Journal Fac. Sci. Univ. Tokyo Sect. IA Math., 20:1 (1973), 25–105 | MR | Zbl
[3] Odinokov O. V., Differentsialnye operatory beskonechnogo poryadka i zadacha Koshi v kompleksnoi oblasti, Dis. $\dots$ kand. fiz.-matem. nauk, M., 1988