Breaking solitons. VI.~Extension of systems of hydrodynamic type
Izvestiya. Mathematics , Tome 39 (1992) no. 2, pp. 959-973.

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of differential equations, admitting the Lax representation and extending the systems of hydrodynamic type, connected with the Volterra model and Toda lattice, are presented. A construction of differential operator equations with derivatives of arbitrary order with respect to the variables $t$ and $y$ and possessing a reduction preserving the eigenvalues of the corresponding operator $L$ is suggested. Dynamical systems having a Lax representation and generalizing the Toda lattice are constructed. A construction of integrable Euler equations admitting a Lax representation with $n$ independent spectral parameters and connected with $n$ Riemann surfaces is found.
@article{IM2_1992_39_2_a1,
     author = {O. I. Bogoyavlenskii},
     title = {Breaking solitons. {VI.~Extension} of systems of hydrodynamic type},
     journal = {Izvestiya. Mathematics },
     pages = {959--973},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a1/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Breaking solitons. VI.~Extension of systems of hydrodynamic type
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 959
EP  - 973
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a1/
LA  - en
ID  - IM2_1992_39_2_a1
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Breaking solitons. VI.~Extension of systems of hydrodynamic type
%J Izvestiya. Mathematics 
%D 1992
%P 959-973
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a1/
%G en
%F IM2_1992_39_2_a1
O. I. Bogoyavlenskii. Breaking solitons. VI.~Extension of systems of hydrodynamic type. Izvestiya. Mathematics , Tome 39 (1992) no. 2, pp. 959-973. http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a1/

[1] Bogoyavlenskii O. I., “Oprokidyvayuschiesya solitony. V. Sistemy gidrodinamicheskogo tipa”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 451–465 | MR | Zbl

[2] Bogoyavlenskii O. I., “Oprokidyvayuschiesya solitony v dvumernykh integriruemykh uravneniyakh”, UMN, 45:4 (1990), 17–77 | MR | Zbl

[3] Mikhailov A. V., “Ob integriruemosti dvumernogo obobscheniya tsepochki Toda”, Pisma v ZhETF, 30:7 (1979), 445–448

[4] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[5] Bogoyavlenskii O. I., “Nekotorye konstruktsii integriruemykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 51:4 (1987), 737–767 | MR

[6] Bourbaki N., Groupes et algebres de Lie. Chaps 4–6, Actualités Sci. Indust. No 1337, Hermann, Paris, 1968 | MR

[7] Zakharov V. E., Manakov S. V., Novikov S. L., Pitaevskii L. P., Teoriya solitonov, Nauka, M., 1980 | MR

[8] Bogoyavlenskii O. I., “Oprokidyvayuschiesya solitony. III”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 123–131 | MR | Zbl

[9] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[10] Bogoyavlenskii O. I., “Algebraicheskie konstruktsii nekotorykh integriruemykh uravnenii”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 712–739

[11] Bogoyavlenskii O. I., “Integriruemye dinamicheskie sistemy, svyazannye s uravneniem KdF”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1123–1141 | Zbl

[12] Itoh Y., “Integrals of a Lottka–Volterra system of odd number of variables”, Progr. Theor. Phys., 78 (1987), 507–510 | DOI | MR