On groups all of whose proper subgroups of which are finite cyclic
Izvestiya. Mathematics , Tome 39 (1992) no. 2, pp. 905-957

Voir la notice de l'article provenant de la source Math-Net.Ru

For any odd number $n\geqslant 1003$, the authors construct an infinite 2-generator group each of whose proper subgroups is contained in a cyclic subgroup of order $n$. This result strengthens analogous results of Ol'shanskii for prime $n>10^{75}$ and Atabekyan and Ivanov for odd $n>10^{80}$. The proof is carried out in the original language of Novikov–Adyan theory.
@article{IM2_1992_39_2_a0,
     author = {S. I. Adian and I. G. Lysenok},
     title = {On groups all of whose proper subgroups of which are finite cyclic},
     journal = {Izvestiya. Mathematics },
     pages = {905--957},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a0/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - I. G. Lysenok
TI  - On groups all of whose proper subgroups of which are finite cyclic
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 905
EP  - 957
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a0/
LA  - en
ID  - IM2_1992_39_2_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%A I. G. Lysenok
%T On groups all of whose proper subgroups of which are finite cyclic
%J Izvestiya. Mathematics 
%D 1992
%P 905-957
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a0/
%G en
%F IM2_1992_39_2_a0
S. I. Adian; I. G. Lysenok. On groups all of whose proper subgroups of which are finite cyclic. Izvestiya. Mathematics , Tome 39 (1992) no. 2, pp. 905-957. http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a0/