On groups all of whose proper subgroups of which are finite cyclic
Izvestiya. Mathematics, Tome 39 (1992) no. 2, pp. 905-957
Cet article a éte moissonné depuis la source Math-Net.Ru
For any odd number $n\geqslant 1003$, the authors construct an infinite 2-generator group each of whose proper subgroups is contained in a cyclic subgroup of order $n$. This result strengthens analogous results of Ol'shanskii for prime $n>10^{75}$ and Atabekyan and Ivanov for odd $n>10^{80}$. The proof is carried out in the original language of Novikov–Adyan theory.
@article{IM2_1992_39_2_a0,
author = {S. I. Adian and I. G. Lysenok},
title = {On groups all of whose proper subgroups of which are finite cyclic},
journal = {Izvestiya. Mathematics},
pages = {905--957},
year = {1992},
volume = {39},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a0/}
}
S. I. Adian; I. G. Lysenok. On groups all of whose proper subgroups of which are finite cyclic. Izvestiya. Mathematics, Tome 39 (1992) no. 2, pp. 905-957. http://geodesic.mathdoc.fr/item/IM2_1992_39_2_a0/
[1] Novikov P. S., Adyan S. I., “O beskonechnykh periodicheskikh gruppakh. I–III”, Izv. AN SSSR. Ser. matem., 32:1–3 (1968) | MR | MR | MR | Zbl
[2] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl
[3] Olshanskii A. Yu., “Gruppy ogranichennogo perioda s podgruppami prostogo poryadka”, Algebra i logika, 21:5 (1982), 553–618 | MR
[4] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR
[5] Guba B. C., Postroenie grupp s novymi svoistvami s pomoschyu diagramm sokrascheniya, avtoref. dis. $\dots$ kand. fiz.-matem. nauk, Izd-vo MGU, M., 1989
[6] Atabekyan B. C., Ivanov S. V., Dva zamechaniya o gruppakh ogranichennogo perioda, dep. v VINITI 30.03.1987, No 2243–V87