On~the~group of reduced norm~1 group of a division algebra over a global field
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 895-904.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if the Platonov–Margulis conjecture on the standard structure of normal subgroups holds for the division algebras of index , then it also holds for the division algebras of index $n=2^mr$, for any $m$. Thus the conjecture is proved for the division algebras of index $2^m$, for any $m$, and its proof in the general case is reduced to the case of division algebras of odd index.
@article{IM2_1992_39_1_a9,
     author = {G. M. Tomanov},
     title = {On~the~group of reduced norm~1 group of a division algebra over a global field},
     journal = {Izvestiya. Mathematics },
     pages = {895--904},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a9/}
}
TY  - JOUR
AU  - G. M. Tomanov
TI  - On~the~group of reduced norm~1 group of a division algebra over a global field
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 895
EP  - 904
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a9/
LA  - en
ID  - IM2_1992_39_1_a9
ER  - 
%0 Journal Article
%A G. M. Tomanov
%T On~the~group of reduced norm~1 group of a division algebra over a global field
%J Izvestiya. Mathematics 
%D 1992
%P 895-904
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a9/
%G en
%F IM2_1992_39_1_a9
G. M. Tomanov. On~the~group of reduced norm~1 group of a division algebra over a global field. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 895-904. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a9/

[1] Platonov V. P., “Arifmeticheskie i strukturnye problemy v lineinykh algebraicheskikh gruppakh”, Rros. Inter. Congr. Math., 1, Vancouver, 1974, 471–476 | MR

[2] Margulis G. A., “Konechnost faktorgruppy diskretnykh podgrupp”, Funkts. analiz i ego prilozh., 13:3 (1979), 28–39 | MR | Zbl

[3] Kneser M., “Orthogonale Gruppen über algebraischen Zahlkörpern”, J. reine angew. Math., 196 (1956), 213–220 | MR | Zbl

[4] Platonov V. P., Rapinchuk A. S., “O gruppe ratsionalnykh tochek trekhmernykh grupp”, DAN SSSR, 247:2 (1979) | MR | Zbl

[5] Margulis G. A., “O multiplikativnoi gruppe algebry kvaternionov nad globalnymi polyami”, DAN SSSR, 252:3 (1988), 542–546 | MR

[6] Tomanov G. M., “Rémarques sur la structure des groupes algébriques définis sur des corps de nombres”, C. R. Acad. Sci. Paris, 310 (1990), 33–36 | MR | Zbl

[7] Tomanov G. M., “On the structure of the algebraic groups over global fields”, Math. Ann., 288 (1990), 515–526 | DOI | MR | Zbl

[8] Platonov V. P., Rapinchuk A. S., “Multiplikativnaya struktura tel nad chislovymi polyami i normennyi printsip Khasse”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 165, 1984, 171–187 | MR | Zbl

[9] Raghunathan M. S., “On the group of norm 1 elements in a division algebra”, Math. Ann., 279 (1988), 457–484 | DOI | MR | Zbl

[10] Tomanov G. M., “On Grunwald–Wang's theorem”, Journal für die reine und angewandte Mathematik, 389 (1988), 209–220 | MR | Zbl

[11] Borovoi M. V., “Abstraktnaya prostota nekotorykh anizotropnykh grupp nad chislovymi polyami”, DAN SSSR, 283 (1985), 794–797 | MR | Zbl

[12] Chernousov V. I., “O proektivnoi prostote dlya nekotorykh grupp ratsionalnykh tochek nad chislovymi polyami”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 398–410 | MR

[13] Tomanov G. M., “Sur la structure des groupes algébrique simples de type $D_n$ définis sur des corps de nombres”, C. R. Acad. Sci. Paris, 306 (1988), 647–658 | MR

[14] Tomanov G. M., “Projective simplicity of groups of rational points of simply connected algebraic groups, defined over number fields”, Topics in Algebra. Part 2, Banach Center Publications, 26, 1990, 455–466 | MR | Zbl

[15] Tomanov G. M., “O strukture algebr s deleniem indeksa $2^m$”, UMN, 45:6 (1990), 147–148 | MR | Zbl

[16] Platonov V. P., Rapinchuk A. S., “Stroenie grupp ratsionalnykh tochek klassicheskikh grupp nad chislovymi polyami”, Sib. matem. zhurn., 30 (1989), 172–187 | MR | Zbl

[17] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR

[18] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[19] Tits J., “Free subgroups in linear groups”, J. of Algebra, 20 (1974), 250–270 | DOI | MR

[20] Riehm C., “The norm 1 group of $p$-adic division algebra”, Am. J. Math., 92 (1970), 499–523 | DOI | MR | Zbl

[21] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[22] Vigneras M.-F., “Arithmétiques des Algèbres do Quaternions”, Lect. Notes. Math., 880, Springer-Verlag, 1980

[23] Platonov V. P., “Problema silnoi approksimatsii i gipoteza Knezera–Titsa dlya algebraicheskikh grupp”, Izv. AN SSSR. Ser. matem., 33:6 (1969), 1211–1220 | MR

[24] Prasad G., “Strong approximation for semisimplo groups over function fields”, Ann. of Math., 105 (1977), 553–572 | DOI | MR | Zbl

[25] Deuring M., Algebren, Springer-Verlag, Berlin, New York, 1968 | MR

[26] Kassels Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969