On~the~group of reduced norm~1 group of a division algebra over a global field
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 895-904
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if the Platonov–Margulis conjecture on the standard structure of normal subgroups holds for the division algebras of index , then it also holds for the division algebras of index $n=2^mr$, for any $m$. Thus the conjecture is proved for the division algebras of index $2^m$, for any $m$, and its proof in the general case is reduced to the case of division algebras of odd index.
@article{IM2_1992_39_1_a9,
author = {G. M. Tomanov},
title = {On~the~group of reduced norm~1 group of a division algebra over a global field},
journal = {Izvestiya. Mathematics },
pages = {895--904},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a9/}
}
G. M. Tomanov. On~the~group of reduced norm~1 group of a division algebra over a global field. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 895-904. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a9/