On~the~group of reduced norm~1 group of a division algebra over a global field
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 895-904

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if the Platonov–Margulis conjecture on the standard structure of normal subgroups holds for the division algebras of index , then it also holds for the division algebras of index $n=2^mr$, for any $m$. Thus the conjecture is proved for the division algebras of index $2^m$, for any $m$, and its proof in the general case is reduced to the case of division algebras of odd index.
@article{IM2_1992_39_1_a9,
     author = {G. M. Tomanov},
     title = {On~the~group of reduced norm~1 group of a division algebra over a global field},
     journal = {Izvestiya. Mathematics },
     pages = {895--904},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a9/}
}
TY  - JOUR
AU  - G. M. Tomanov
TI  - On~the~group of reduced norm~1 group of a division algebra over a global field
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 895
EP  - 904
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a9/
LA  - en
ID  - IM2_1992_39_1_a9
ER  - 
%0 Journal Article
%A G. M. Tomanov
%T On~the~group of reduced norm~1 group of a division algebra over a global field
%J Izvestiya. Mathematics 
%D 1992
%P 895-904
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a9/
%G en
%F IM2_1992_39_1_a9
G. M. Tomanov. On~the~group of reduced norm~1 group of a division algebra over a global field. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 895-904. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a9/