The~method of function of an operator, and iterative processes in some optimal control problems
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 795-816.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a problem with control of the right-hand side of the state equation and with observation at the terminal time instant, the representation of the solution in the form of a function of an operator is obtained. A criterion for solvability of the time-optimal control problem is found. An iterative process for solving the problem, whose rate of convergence does not depend on the regularization parameter, is constructed.
@article{IM2_1992_39_1_a4,
     author = {I. I. Golichev},
     title = {The~method of function of an operator, and iterative processes in some optimal control problems},
     journal = {Izvestiya. Mathematics },
     pages = {795--816},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a4/}
}
TY  - JOUR
AU  - I. I. Golichev
TI  - The~method of function of an operator, and iterative processes in some optimal control problems
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 795
EP  - 816
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a4/
LA  - en
ID  - IM2_1992_39_1_a4
ER  - 
%0 Journal Article
%A I. I. Golichev
%T The~method of function of an operator, and iterative processes in some optimal control problems
%J Izvestiya. Mathematics 
%D 1992
%P 795-816
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a4/
%G en
%F IM2_1992_39_1_a4
I. I. Golichev. The~method of function of an operator, and iterative processes in some optimal control problems. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 795-816. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a4/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 372 pp. | Zbl

[3] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[4] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR

[5] Butkovskii A. G., Metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975 | Zbl

[6] Egorov A. L., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978 | MR

[7] Krylov N. V., Upravlyaemye protsessy diffuznogo tipa, Nauka, M., 1977 | MR

[8] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[9] Vasilev F. P., Ishmukhametov A. Z., Potapov M. M., Obobschennyi metod momentov v zadachakh optimalnogo upravleniya, Izd-vo MGU, M., 1989, 142 pp. | MR

[10] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Nauk. dumka, Kiev, 1965, 798 pp. | MR

[11] Golichev I. I., “Approksimatsiya elementa iz oblasti znachenii funktsii ot operatora”, DAN SSSR, 245:3 (1979), 527–530 | MR | Zbl

[12] Golichev I. I., “Approksimatsiya reshenii nekotorykh kraevykh i smeshannykh zadach”, DAN SSSR, 250:3 (1980), 535–539 | MR | Zbl