Generalized functions and Gaussian path integrals over non-archimedean function spaces
Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 761-794

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical apparatus is developed for non-Archimedean physics: a theory of generalized functions, a theory of integration, and a harmonic analysis. Both finite-dimensional and infinite-dimensional non-Archimedean spaces are considered. Gaussian and Feynman path integrals on non-Archimedean function spaces are introduced. Quantization of a non-Archimedean scalar bosonic field is carried out in the formalism of path integrals. Linear differential equations in spaces of test functions and spaces of generalized functions on infinite-dimensional non-Archimedean spaces are studied (in particular, the heat equation and the Schrödinger equation with a potential).
@article{IM2_1992_39_1_a3,
     author = {A. Yu. Khrennikov},
     title = {Generalized functions and {Gaussian} path integrals over non-archimedean function spaces},
     journal = {Izvestiya. Mathematics },
     pages = {761--794},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a3/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Generalized functions and Gaussian path integrals over non-archimedean function spaces
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 761
EP  - 794
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a3/
LA  - en
ID  - IM2_1992_39_1_a3
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Generalized functions and Gaussian path integrals over non-archimedean function spaces
%J Izvestiya. Mathematics 
%D 1992
%P 761-794
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a3/
%G en
%F IM2_1992_39_1_a3
A. Yu. Khrennikov. Generalized functions and Gaussian path integrals over non-archimedean function spaces. Izvestiya. Mathematics , Tome 39 (1992) no. 1, pp. 761-794. http://geodesic.mathdoc.fr/item/IM2_1992_39_1_a3/