The Weil--Petersson metric on the moduli space of stable vector bundles and sheaves on an algebraic surface
Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 599-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

A twistor description of the Weil–Petersson metric on the moduli space of stable vector bundles on a K3-surface with hyper-Kahler structure is given, and this metric is extended to the compactification of the moduli space by torsion-free sheaves.
@article{IM2_1992_38_3_a7,
     author = {A. N. Tyurin},
     title = {The {Weil--Petersson} metric on the moduli space of stable vector bundles and sheaves on an algebraic surface},
     journal = {Izvestiya. Mathematics },
     pages = {599--620},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a7/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - The Weil--Petersson metric on the moduli space of stable vector bundles and sheaves on an algebraic surface
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 599
EP  - 620
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a7/
LA  - en
ID  - IM2_1992_38_3_a7
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T The Weil--Petersson metric on the moduli space of stable vector bundles and sheaves on an algebraic surface
%J Izvestiya. Mathematics 
%D 1992
%P 599-620
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a7/
%G en
%F IM2_1992_38_3_a7
A. N. Tyurin. The Weil--Petersson metric on the moduli space of stable vector bundles and sheaves on an algebraic surface. Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 599-620. http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a7/

[1] Ahlfors L., “Some remarks on Teichmüller space of Riemann surfaces”, Ann. of Math, 72 (1961), 171–191 | DOI | MR

[2] Buchdahl N. P., Hermitian–Einstein connections over complex surfaces, Preprint, MPI, Bonn, 1986 | MR

[3] Calabi E., “Metriques kählériennes et fibres holomorphes”, Ann. Sci. Ecole Norm. Sup. (4), 12 (1979) | MR

[4] Gieseker D., “On the moduli of vector bundles on an algebraic surface”, Ann. of Math., 106 (1977), 45–60 | DOI | MR | Zbl

[5] Hitchin J., Karlhede A., Lindström U., Rocek M., “Hyperkähler metrics and supersymmetry”, Comm. Math. Phys., 108 (1987), 535–589 | DOI | MR | Zbl

[6] Hitchin N. T., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl

[7] Hitchin N. J., “Metric on moduli spaces”, Contemporary Math., 58 (1986), 157–177 | MR

[8] Itoh M., “Quaternion structure on the moduli space of Yang–Mills connections”, Math. Ann., 276 (1987), 581–595 | DOI | MR

[9] Itoh M., “Poincaré bundle and Chern classes”, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., 18, Academic Press, Boston, 1990 | MR

[10] Koiso N., “Einstein metrics and complex structures”, Invent. Math., 73 (1983), 71–106 | DOI | MR | Zbl

[11] Mukai S., “Symplectic structure of the moduli space of sheaves on an abelian or $K3$ surfaces”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl

[12] Maruyama M., “Moduli of stable sheaves. II”, J. Math. Kyoto Univ. | MR | Zbl

[13] Nannicini N., “Weil–Peterson metric in the moduli space of compact polarized Kähler–Einstein manifolds of zero first Chern class”, Manuscripta Math., 1986, 405–438 | DOI | MR | Zbl

[14] Royden H., “Intrinsic metric on Teichmüller spaces”, Proceedings International Congress Math., 2 (1974), 217–221 | MR

[15] Siu Y. T., Curvature of the Weil–Peterson metric in the moduli space of compact Kähler–Einstein manifolds of negative first Chern class, Preprint, 1985 | MR

[16] Salamon S., “Topics in four-dimensional riemannian geometry”, Lect. Notes in Math., 1989, no. 1022, 34–125

[17] Schumaeher G., “On the geometry of moduli spaces”, Manuscripta Math., 50 (1985), 223–267 | MR

[18] Thurston W. P., “Some simple examples of symplectic manifolds”, Proc. Amer. Math. Soc., 55 (1976), 467–468 | DOI | MR | Zbl

[19] Uhlenbeck A., Yau S. T., On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Preprint, 1986 | MR | Zbl

[20] Wolpert S., “Chern forms and the Riemann tensor for the moduli space of curves”, Inv. Math., 85:1 (1986), 119–145 | DOI | MR | Zbl

[21] Yan S. T., “On the Ricci curvature of a compact Kähler manifold and the complex Houge–Apyere equation”, J. Comm. Pure and Appl. Math., 31 (1978), 339–441 | DOI | MR

[22] Artamkin I. V., “O deformatsii puchkov bez krucheniya na algebraicheskoi poverkhnosti”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 435–468 | MR | Zbl

[23] Zograf P. G., Takhtadzhyan L. A., O geometrii prostranstva modulei vektornykh rassloenii nad rimanovoi poverkhnostyu, Preprint R-5-87, LOMI

[24] Tyurin A. N., “Simplekticheskie struktury na mnogoobraziyakh modulei vektornykh rassloenii na algebraicheskikh poverkhnostyakh s $pg>0$”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 813–852 | MR | Zbl

[25] Tyurin A. N., “Algebro-geometricheskie aspekty gladkosti. I”, UMN, 44:3 (1989), 93–143 | MR | Zbl

[26] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988 | MR