Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1992_38_3_a7, author = {A. N. Tyurin}, title = {The {Weil--Petersson} metric on the moduli space of stable vector bundles and sheaves on an algebraic surface}, journal = {Izvestiya. Mathematics }, pages = {599--620}, publisher = {mathdoc}, volume = {38}, number = {3}, year = {1992}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a7/} }
TY - JOUR AU - A. N. Tyurin TI - The Weil--Petersson metric on the moduli space of stable vector bundles and sheaves on an algebraic surface JO - Izvestiya. Mathematics PY - 1992 SP - 599 EP - 620 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a7/ LA - en ID - IM2_1992_38_3_a7 ER -
A. N. Tyurin. The Weil--Petersson metric on the moduli space of stable vector bundles and sheaves on an algebraic surface. Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 599-620. http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a7/
[1] Ahlfors L., “Some remarks on Teichmüller space of Riemann surfaces”, Ann. of Math, 72 (1961), 171–191 | DOI | MR
[2] Buchdahl N. P., Hermitian–Einstein connections over complex surfaces, Preprint, MPI, Bonn, 1986 | MR
[3] Calabi E., “Metriques kählériennes et fibres holomorphes”, Ann. Sci. Ecole Norm. Sup. (4), 12 (1979) | MR
[4] Gieseker D., “On the moduli of vector bundles on an algebraic surface”, Ann. of Math., 106 (1977), 45–60 | DOI | MR | Zbl
[5] Hitchin J., Karlhede A., Lindström U., Rocek M., “Hyperkähler metrics and supersymmetry”, Comm. Math. Phys., 108 (1987), 535–589 | DOI | MR | Zbl
[6] Hitchin N. T., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl
[7] Hitchin N. J., “Metric on moduli spaces”, Contemporary Math., 58 (1986), 157–177 | MR
[8] Itoh M., “Quaternion structure on the moduli space of Yang–Mills connections”, Math. Ann., 276 (1987), 581–595 | DOI | MR
[9] Itoh M., “Poincaré bundle and Chern classes”, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., 18, Academic Press, Boston, 1990 | MR
[10] Koiso N., “Einstein metrics and complex structures”, Invent. Math., 73 (1983), 71–106 | DOI | MR | Zbl
[11] Mukai S., “Symplectic structure of the moduli space of sheaves on an abelian or $K3$ surfaces”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl
[12] Maruyama M., “Moduli of stable sheaves. II”, J. Math. Kyoto Univ. | MR | Zbl
[13] Nannicini N., “Weil–Peterson metric in the moduli space of compact polarized Kähler–Einstein manifolds of zero first Chern class”, Manuscripta Math., 1986, 405–438 | DOI | MR | Zbl
[14] Royden H., “Intrinsic metric on Teichmüller spaces”, Proceedings International Congress Math., 2 (1974), 217–221 | MR
[15] Siu Y. T., Curvature of the Weil–Peterson metric in the moduli space of compact Kähler–Einstein manifolds of negative first Chern class, Preprint, 1985 | MR
[16] Salamon S., “Topics in four-dimensional riemannian geometry”, Lect. Notes in Math., 1989, no. 1022, 34–125
[17] Schumaeher G., “On the geometry of moduli spaces”, Manuscripta Math., 50 (1985), 223–267 | MR
[18] Thurston W. P., “Some simple examples of symplectic manifolds”, Proc. Amer. Math. Soc., 55 (1976), 467–468 | DOI | MR | Zbl
[19] Uhlenbeck A., Yau S. T., On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Preprint, 1986 | MR | Zbl
[20] Wolpert S., “Chern forms and the Riemann tensor for the moduli space of curves”, Inv. Math., 85:1 (1986), 119–145 | DOI | MR | Zbl
[21] Yan S. T., “On the Ricci curvature of a compact Kähler manifold and the complex Houge–Apyere equation”, J. Comm. Pure and Appl. Math., 31 (1978), 339–441 | DOI | MR
[22] Artamkin I. V., “O deformatsii puchkov bez krucheniya na algebraicheskoi poverkhnosti”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 435–468 | MR | Zbl
[23] Zograf P. G., Takhtadzhyan L. A., O geometrii prostranstva modulei vektornykh rassloenii nad rimanovoi poverkhnostyu, Preprint R-5-87, LOMI
[24] Tyurin A. N., “Simplekticheskie struktury na mnogoobraziyakh modulei vektornykh rassloenii na algebraicheskikh poverkhnostyakh s $pg>0$”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 813–852 | MR | Zbl
[25] Tyurin A. N., “Algebro-geometricheskie aspekty gladkosti. I”, UMN, 44:3 (1989), 93–143 | MR | Zbl
[26] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988 | MR