Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$
Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 575-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Morse-type index of a compact $p$-dimensional minimal submanifold is the index of the second variation of the $p$-dimensional volume functional. In this paper a definition is given for the index of a noncompact minimal submanifold, and the indices of some two-dimensional minimal surfaces in three-dimensional Euclidean space $\mathbf R^3$ and in three-dimensional Lobachevsky space $\mathbf H^3$ are computed. In particular, the indices of all the classic minimal surfaces in $\mathbf R^3$ are computed: the catenoid, Enneper surfaces, Scherk surfaces, Richmond surfaces, and others. The indices of spherical catenoids in $\mathbf H^3$ are computed, which completes the computation of the indices of catenoids in $\mathbf H^3$ (hyperbolic and parabolic catenoids have zero index, that is, they are stable). It is also proved that for a one-parameter family of helicoids in $\mathbf H^3$ the helicoids are stable for certain values of the parameter.
@article{IM2_1992_38_3_a6,
     author = {A. A. Tuzhilin},
     title = {Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$},
     journal = {Izvestiya. Mathematics },
     pages = {575--598},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a6/}
}
TY  - JOUR
AU  - A. A. Tuzhilin
TI  - Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 575
EP  - 598
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a6/
LA  - en
ID  - IM2_1992_38_3_a6
ER  - 
%0 Journal Article
%A A. A. Tuzhilin
%T Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$
%J Izvestiya. Mathematics 
%D 1992
%P 575-598
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a6/
%G en
%F IM2_1992_38_3_a6
A. A. Tuzhilin. Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$. Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 575-598. http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a6/

[1] Pluzhnikov A. I., “Nekotorye svoistva garmonicheskikh otobrazhenii v sluchae sfer i grupp Li”, DAN SSSR, 268:6 (1983), 1300–1302 | MR | Zbl

[2] Tyrin A. I., “O svoistve otsutstviya lokalnykh minimumov u mnogomernogo funktsionala Dirikhle”, UMN, 2 (1984), 193–194 | MR | Zbl

[3] Beeson M., Tromba A., “The casp catastrophe of Thom in bifurcation of minimal surfaces”, Manuscr. Math., 46 (1984), 273–307 | DOI | MR

[4] Tuzhilin A. A., Fomenko A. T., “Mnogoznachnye otobrazheniya, minimalnye poverkhnosti i mylnye plenki”, Vest. MGU. Ser. matem., 3 (1986), 3–12 | MR

[5] Bohme R., Tromba A., “The index theorem of classical minimal surfaces”, Ann. Math., 113 (1981), 447–499 | DOI | MR

[6] Simons J., “Minimal varieties in Riemannian manifolds”, Ann. Math. Ser. 2, 88:1 (1968), 62–105 | DOI | MR | Zbl

[7] Smale S., “On the Morse index theorem”, J. Math. Mech., 14:6 (1965), 1049–1055 | MR | Zbl

[8] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR | Zbl

[9] Barbosa J. L., Carmo M. Do., “On the size of a stable minimal surfaces in $\mathbf R^3$”, Amer. J. Math., 98:2 (1976), 515–528 | DOI | MR | Zbl

[10] Carmo M. Do., Peng C. K., “The stable minimal surfaces in $\mathbf R^3$ are planes”, Bull. Amer. Math. Soc., 1:6 (1979), 903–906 | DOI | MR | Zbl

[11] Carmo M. Do., Dajczer M., “Rotation hypersurfaces in spaces of constant curvature”, Trans. Amer. Math. Soc., 277:2 (1983), 685–709 | DOI | MR | Zbl

[12] Lawson H. B., “The equivariant Plateau problem and interior regularity”, Trans. Amer. Math. Soc., 173 (1972), 231–249 | DOI | MR | Zbl

[13] Fomenko A. T., Variatsionnye metody v topologii, Nauka, M., 1982 | MR

[14] Fomenko A. T., “Periodichnost Botta s tochki zreniya mnogomernogo funktsionala Dirikhle”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 667–681 | MR | Zbl

[15] Fischer-Colbrie D., “On complete minimal surfaces with finite Morse index in threemanifolds”, Invent. Math., 82:1 (1985), 121–132 | DOI | MR | Zbl

[16] Berard P. H., Besson G., “On the number of bound states and estimates on some geometric invariants”, Lect. Notes in Math., 1324 (1988), 30–40 | DOI | MR | Zbl

[17] Tysk J., “Eigenvalue estimates with application to minimal surfaces”, Pacific J. Math., 128:2 (1987), 361–366 | MR | Zbl

[18] Lopez F., Ros A., Complete minimal surfaces with index one and stable constant mean curvature surfaces, Preprint / Granada, 1987 | MR

[19] Osserman R., “Minimalnye poverkhnosti”, UMN, 22:4 (1967), 55–136 | MR | Zbl

[20] Mori H., “Minimal surfaces of revolution in $\mathbf H^3$ and their stability properties”, Indiana Math. J., 30 (1981), 787–794 | DOI | MR | Zbl

[21] Rassias T. M., Foundation of global non-linear analysis, Teubner-text zur Math., 86, Leipzig, 1986 | MR | Zbl

[22] Tuzhilin A. A., “O bifurkatsii nekotorykh dvumernykh minimalnykh poverkhnostei pri dvuparametricheskoi variatsii kontura”, Geometriya, differentsialnye uravneniya i mekhanika, Izd-vo MGU, M., 1986, 140–145 | MR

[23] Tuzhilin A. A., “Indeksy dvumernykh minimalnykh poverkhnostei”, Geometriya i teoriya osobennostei v nelineinykh uravneniyakh, Izd-vo VGU, Voronezh, 1987, 170–176 | MR

[24] Tuzhilin A. A., “Indeksy dvumernykh minimalnykh poverkhnostei v $\mathbf R^3$”, Izbrannye voprosy algebry, geometrii i diskretnoi matematiki, Izd-vo MGU, M., 1988, 123–128

[25] Tuzhilin A. A., “Vychislenie indeksov minimalnykh poverkhnostei”, Vsesoyuznaya konferentsiya po geometrii “v tselom”. Tezisy dokladov, Sibirskoe otdelenie AN SSSR. In-t matematiki, Novosibirsk, 1987, s. 123

[26] Tuzhilin A. A., “About indices of minimal surfaces (angl.)”, Bakinskaya mezhdunarodnaya topologicheskaya konferentsiya. Tezisy dokladov, Matem. in-t im. V. A. Steklova. In-t matematiki i mekhaniki (Baku), Baku, s. 201

[27] Borisovich A. Yu., “Operator Plato i bifurkatsiya dvumernykh minimalnykh poverkhnostei”, Globalnyi analiz i matematicheskaya fizika, Voronezh, 1987, 142–154 | Zbl

[28] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1984 | MR