Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$
Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 575-598

Voir la notice de l'article provenant de la source Math-Net.Ru

The Morse-type index of a compact $p$-dimensional minimal submanifold is the index of the second variation of the $p$-dimensional volume functional. In this paper a definition is given for the index of a noncompact minimal submanifold, and the indices of some two-dimensional minimal surfaces in three-dimensional Euclidean space $\mathbf R^3$ and in three-dimensional Lobachevsky space $\mathbf H^3$ are computed. In particular, the indices of all the classic minimal surfaces in $\mathbf R^3$ are computed: the catenoid, Enneper surfaces, Scherk surfaces, Richmond surfaces, and others. The indices of spherical catenoids in $\mathbf H^3$ are computed, which completes the computation of the indices of catenoids in $\mathbf H^3$ (hyperbolic and parabolic catenoids have zero index, that is, they are stable). It is also proved that for a one-parameter family of helicoids in $\mathbf H^3$ the helicoids are stable for certain values of the parameter.
@article{IM2_1992_38_3_a6,
     author = {A. A. Tuzhilin},
     title = {Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$},
     journal = {Izvestiya. Mathematics },
     pages = {575--598},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a6/}
}
TY  - JOUR
AU  - A. A. Tuzhilin
TI  - Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 575
EP  - 598
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a6/
LA  - en
ID  - IM2_1992_38_3_a6
ER  - 
%0 Journal Article
%A A. A. Tuzhilin
%T Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$
%J Izvestiya. Mathematics 
%D 1992
%P 575-598
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a6/
%G en
%F IM2_1992_38_3_a6
A. A. Tuzhilin. Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$. Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 575-598. http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a6/