Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1992_38_3_a5, author = {E. S. Sinaiskii}, title = {Simultaneous approximation of the solution and its derivatives in a boundary value problem for a linear differential equation with polynomial coefficients}, journal = {Izvestiya. Mathematics }, pages = {553--573}, publisher = {mathdoc}, volume = {38}, number = {3}, year = {1992}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a5/} }
TY - JOUR AU - E. S. Sinaiskii TI - Simultaneous approximation of the solution and its derivatives in a boundary value problem for a linear differential equation with polynomial coefficients JO - Izvestiya. Mathematics PY - 1992 SP - 553 EP - 573 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a5/ LA - en ID - IM2_1992_38_3_a5 ER -
%0 Journal Article %A E. S. Sinaiskii %T Simultaneous approximation of the solution and its derivatives in a boundary value problem for a linear differential equation with polynomial coefficients %J Izvestiya. Mathematics %D 1992 %P 553-573 %V 38 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a5/ %G en %F IM2_1992_38_3_a5
E. S. Sinaiskii. Simultaneous approximation of the solution and its derivatives in a boundary value problem for a linear differential equation with polynomial coefficients. Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 553-573. http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a5/
[1] Dzyadyk V. K., “Approksimatsionnyi metod priblizheniya algebraicheskimi mnogochlenami reshenii lineinykh differentsialnykh uravnenii”, Izv. AN SSSR. Ser. matem., 38:4 (1974), 937–967 | MR | Zbl
[2] Dzyadyk V. K., Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Nauk. dumka, Kiev, 1988, s. 304 | MR
[3] Ostrovetskii L. A., “Reshenie po $\operatorname{A}$-metodu mnogotochechnykh kraevykh zadach”, Nekotorye voprosy teorii approksimatsii funktsii, In-t matematiki AN USSR, Kiev, 1985, 94–100 | MR
[4] Sinaiskii E. S., “Approksimatsionnyi metod v odnoi kraevoi zadache dlya lineinogo differentsialnogo uravneniya s mnogochlennymi koeffitsientami”, Ukr. matem. zhurn., 40:2 (1988), 248–253 | MR
[5] Lomakin V. A., Teoriya uprugosti neodnorodnykh tel, Izd-vo MGU, M., 1976, s. 368
[6] Gelfond A. O., “O mnogochlenakh, naimenee uklonyayuschikhsya ot nulya vmeste so svoimi proizvodnymi”, DAN SSSR, 96:4 (1954), 689–691 | MR
[7] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, Gostekhteorizdat, M., 1954, s. 328
[8] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A. i dr., Integralnye uravneniya, Nauka, M., 1968, s. 448
[9] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965, s. 276 | MR
[10] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976, s. 328 | MR
[11] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973, s. 632 | MR | Zbl
[12] Polia G., Sege G., Zadachi i teoremy iz analiza. V 2-kh ch., Ch. 2. Teoriya funktsii. Raspredelenie nulei. Polinomy. Opredeliteli. Teoriya chisel, Nauka, M., 1978, s. 432
[13] Lantsosh K., Prakticheskie metody prikladnogo analiza, Fizmatgiz, M., 1961, s. 524