Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields
Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 647-657.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies abelian varieties with infinite torsion in infinite extensions $L$ of a number field $K$ for which the Galois group $\operatorname{Gal}(L/K)$ is a compact $l$-adic Lie group.
@article{IM2_1992_38_3_a10,
     author = {Yu. G. Zarhin},
     title = {Torsion and endomorphisms of {Abelian} varieties over infinite extensions of number fields},
     journal = {Izvestiya. Mathematics },
     pages = {647--657},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a10/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 647
EP  - 657
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a10/
LA  - en
ID  - IM2_1992_38_3_a10
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields
%J Izvestiya. Mathematics 
%D 1992
%P 647-657
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a10/
%G en
%F IM2_1992_38_3_a10
Yu. G. Zarhin. Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields. Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 647-657. http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a10/

[1] Bogomolov F. A., “Tochki konechnogo poryadka na abelevom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 782–804 | MR | Zbl

[2] Coleman R. F., “Ramified torsion points on curves”, Duke Math. J., 54 (1987), 615–640 | DOI | MR | Zbl

[3] Faltings G., “Endlichkeitssätze für Abelsche Varietäten über Zahlkörpern”, Invent. Math., 73 (1983), 349–366 | DOI | MR | Zbl

[4] Imai H., “A remark on the rational points of abelian varieties with values in cyclotornic $\mathbf Z_p$-extensions”, Proc. Japan Acad., 51 (1975), 12–16 | DOI | MR | Zbl

[5] Kurchanov P. F., “Ellipticheskie krivye beskonechnogo ranga nad nekrugovymi $\Gamma$-rasshireniyami”, Matem. sb., 90(132):2 (1973), 320–324 | Zbl

[6] Manin Yu. I., “Krugovye polya i modulyarnye krivye”, UMN, 26:6 (1971), 7–71 | MR | Zbl

[7] Mazur B., “Rational points of abelian varieties with values in towers of number fields”, Invent. Math., 18 (1972), 183–266 | DOI | MR | Zbl

[8] Mumford D., Abelian varieties, Oxford Vniversity Press, London, 1974 | MR | Zbl

[9] Ribet K. A., “Torsion points of abelian varieties in cyclotomic extensions”, Enseign. Math. (2), 27 (1981), 315–319

[10] Ribet K. A., “Galois actions on division points of abelian varieties with many real multiplications”, Amer. J. Math., 98 (1976), 751–804 | DOI | MR | Zbl

[11] Serre J.-P., Abelian $l$-adic representations and elliptic curves, Benjamin, New-York, Amsterdam, 1968 ; Addison-Wesley, Palo Alto, 1989, second edition | MR | Zbl | Zbl

[12] Serre J.-P., “Proprietes galoisiennes des points d'ordre finis des courbes elliptiques”, Invent. Math., 15 (1972), 259–331 | DOI | MR | Zbl

[13] Wintenberger J.-P., “Motifs et ramifications pour les points d'ordre fini des variéteś abélienness”, Séminaire de Théorie Nombres, Paris, 1986–87 ; Progress in Math., 75, Birkhäuser, Boston, 1988, 453–471 | Zbl | MR

[14] Serre J.-P., “Résumé de cours de 1984–1985”, Annuaire du Collège de France, Paris, 1985 | MR

[15] Serre J.-P., “Résumé de cours de 1985–1986”, Annuaire du Collège de France, Paris, 1986

[16] Serre J.-P., “Représentations $l$-adiques”, Kyoto Int. Symposium on Algebraic Number Theory, Japan Soc. for the Promotion of Science, Tokyo, 1977, 177–193 | MR

[17] Shimura G., “Introduction to the arithmetic theory of automorphic functions”, Publ. Math. Soc. Japan, 11 (1971) | MR | Zbl

[18] Zarhin Yu. G., “Endomorphisms and torsion of Abelian varieties”, Duke Math. J., 54 (1987), 131–145 | DOI | MR | Zbl

[19] Zarhin Yu. G., “A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction”, Invent. Math., 79 (1985), 309–321 | DOI | MR | Zbl

[20] Zarkhin Yu. G., “Abelevy mnogoobraziya, $l$-adicheskie predstavleniya i $SL_2$”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 294–308 | MR | Zbl

[21] Wingberg K., “On the rational points of Abelian varieties over $\mathbf Z_p$- extensions of number fields”, Math. Ann., 279 (1987), 9–24 | DOI | MR | Zbl

[22] Zarhin Yu., “Torsion of Abelian varieties over $GL(2)$-extensions of number fields”, Math. Ann., 284 (1989), 631–646 | DOI | MR

[23] Zarhin Yu. G., “Finiteness theorems for dimensions of irreducible $\lambda$-adic representations”, Arithmetic Algebrais Geometry. Progress in Math., 89, Birkhäuser, Boston, 1991, 431–444 | MR