Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields
Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 647-657

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies abelian varieties with infinite torsion in infinite extensions $L$ of a number field $K$ for which the Galois group $\operatorname{Gal}(L/K)$ is a compact $l$-adic Lie group.
@article{IM2_1992_38_3_a10,
     author = {Yu. G. Zarhin},
     title = {Torsion and endomorphisms of {Abelian} varieties over infinite extensions of number fields},
     journal = {Izvestiya. Mathematics },
     pages = {647--657},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a10/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 647
EP  - 657
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a10/
LA  - en
ID  - IM2_1992_38_3_a10
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields
%J Izvestiya. Mathematics 
%D 1992
%P 647-657
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a10/
%G en
%F IM2_1992_38_3_a10
Yu. G. Zarhin. Torsion and endomorphisms of Abelian varieties over infinite extensions of number fields. Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 647-657. http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a10/