Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1992_38_3_a1, author = {S. Zube}, title = {Logarithmic transformation of an elliptic surface, and vector bundles}, journal = {Izvestiya. Mathematics }, pages = {455--469}, publisher = {mathdoc}, volume = {38}, number = {3}, year = {1992}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a1/} }
S. Zube. Logarithmic transformation of an elliptic surface, and vector bundles. Izvestiya. Mathematics , Tome 38 (1992) no. 3, pp. 455-469. http://geodesic.mathdoc.fr/item/IM2_1992_38_3_a1/
[1] Atiyah M. F., “Vector bundles over an elliptic curve”, Proc. Lond. Math. Soc., 27:3 (1957), 414–452 | DOI | MR
[2] Atiyah M. F., “Complex analitic conections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl
[3] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London, 308 (1982), 523–615 | DOI | MR
[4] Bart W., Peters C., Van de Ven A., Compact complex surfaces, Springer, Berlin, Heidelberg, New York, 1984 | MR
[5] Friedman R., “Rank two vector bundles over regular elliptic surfaces”, Invent. math., 96:2 (1989), 283–333 | DOI | MR
[6] Kodaira K., “On the structure of complex analitic surfaces. I”, American J. of math., 86 (1967), 751–823 | DOI | MR