On superintuitionistic propositional logics connected with partially ordered sets
Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 375-397.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper introduces a new method of representing pseudo-Boolean algebras by implication structures of a special type or by partially ordered sets. This is used to construct four sequences of pseudo-Boolean algebras. Their properties and the properties of the logics prescribed by the sequences are studied. The connection between these logics and the logic consisting of the realizable propositional formulas is established, and a problem posed by Hosoi and Ono is solved.
@article{IM2_1992_38_2_a7,
     author = {V. I. Khomich},
     title = {On superintuitionistic propositional logics connected with partially ordered sets},
     journal = {Izvestiya. Mathematics },
     pages = {375--397},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a7/}
}
TY  - JOUR
AU  - V. I. Khomich
TI  - On superintuitionistic propositional logics connected with partially ordered sets
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 375
EP  - 397
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a7/
LA  - en
ID  - IM2_1992_38_2_a7
ER  - 
%0 Journal Article
%A V. I. Khomich
%T On superintuitionistic propositional logics connected with partially ordered sets
%J Izvestiya. Mathematics 
%D 1992
%P 375-397
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a7/
%G en
%F IM2_1992_38_2_a7
V. I. Khomich. On superintuitionistic propositional logics connected with partially ordered sets. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 375-397. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a7/

[1] Klini S. K., Vvedenie v metamatematiku, IL, M., 1957

[2] Yankov V. A., “Ob ischislenii slabogo zakona isklyuchennogo tretego”, Izv AN SSSR. Ser. matem., 32:5 (1968), 1044–1051

[3] Minari P., “Intermediate logics with the same disjnctionless fragment as intuitionistic logic”, Studia logica, 45:2 (1986), 207–222 | DOI | MR | Zbl

[4] Zakharyaschev M. B., “O diz'yunktivnom svoistve superintuitsionistskikh i modalnykh logik”, Matem. zametki, 42:5 (1987), 729–738 | MR | Zbl

[5] Rose G. F., “Propositional calculus and realizability”, Transactions of the American Mathematical Society, 75:1 (1953), 1–19 | DOI | MR | Zbl

[6] Plisko V. E., “Ob odnoi formalnoi sisteme, svyazannoi s realizuemostyu”, Teoriya algorifmov i matematicheskaya logika, VTs AN SSSR, M., 1974, 148–158 | MR

[7] Medvedev Yu. T., “Finitnye zadachi”, DAN SSSR, 142:5 (1962), 1015–1018 | MR | Zbl

[8] Medvedev Yu. T., “Interpretatsiya logicheskikh formul posredstvom finitnykh zadach i svyaz eë s teoriei realizuemosti”, DAN SSSR, 148:4 (1963), 771–774 | MR | Zbl

[9] Medvedev Yu. T., “Ob interpretatsii logicheskikh formul posredstvom finitnykh zadach”, DAN SSSR, 169:1 (1966), 20–23 | Zbl

[10] Raseva E., Sikorskii R., Matematika metamatematiki, Nauka, M., 1972 | MR

[11] Horn A., “The separation theorem of intuitionist propositional calculus”, J. Symbolic Logic, 27:4 (1962), 391–399 | DOI | MR

[12] Khomich V. I., “Ob otdelimykh superintuitsionistskikh propozitsionalnykh ischisleniyakh i o kon'yunktivno nerazlozhimykh elementakh v implikativnykh polustrukturakh”, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 32:2 (1986), 149–180 | DOI | MR | Zbl

[13] Hosoi T., “On intermediate logic. I”, J. of the faculty of science. University Tokyo Section I, 14:2 (1967), 293–312 | MR

[14] Hosoi T., Ono H., “Intermediate propositional logics (A Survey)”, J. of Tsuda College, 5 (1973), 67–82 | MR

[15] Khomich V. I., “Ob odnom superintuitsionistskom propozitsionalnom ischislenii”, Vosmaya vsesoyuznaya konferentsiya po matematicheskoi logike: Tezisy soobschenii, Izd-vo MGPI, Moskva, 1986, 203

[16] Khomich V. I., “O vlozhenii implikatur”, Voprosy matematicheskoi logiki i teorii algoritmov, VTs AN SSSR, M., 1988, 17–33 | MR

[17] Jaskowski S., “Recherches sur le systéme de la logique intuitioniste”, Actualités scicntifiques et industrielles, 393, Paris, 1936, 58–61 | Zbl

[18] Pilchak B. Yu., “Ob ischislenii zadach”, Ukr. matem. zhurn., 4:2 (1952), 174–194

[19] McKay C. G., “The non-separability of a certain finite extension of Heyting's propositional logic”, Nederl. Akad. Wetensch. Proc. Ser. A, 71:3 (1968), 312–315 | MR | Zbl

[20] Khomich V. I., “Otdelimost superintuitsionistskikh propozitsionalnykh logik”, Issledovaniya po teorii algorifmov i matematicheskoi logike, Nauka, M., 1979, 98–115 | MR

[21] Bull R. A., “Some results for implicational calculi”, J. Symbolic Logic, 29:1 (1964), 33–39 | DOI | MR | Zbl

[22] McKay C. G., “On finite logics”, Nederl. Akad. Wetensch. Proc. Ser. A, 70:3 (1967), 363–365 | MR | Zbl

[23] Kreisel G., Putnam H., “Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aussagenkalkül”, Arch. f. Math. Log., 3 (1957), 74–78 | DOI | MR | Zbl

[24] Yankov V. A., “O realizuemykh formulakh logiki vyskazyvanii”, DAN SSSR, 151:5 (1963), 1035–1037 | Zbl