Nonselfintersecting closed extremals of multivalued or not everywhere positive functionals
Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 359-374

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof is given for the theorem of Novikov and the author on the existence of a closed nonselfintersecting extremal for a single-valued functional corresponding to the motion of a charged particle in a strong magnetic field on a Riemannian manifold homeomorphic to the 2-sphere, and an analogue in the case of multivalued functionals is also proved.
@article{IM2_1992_38_2_a6,
     author = {I. A. Taimanov},
     title = {Nonselfintersecting closed extremals of multivalued or not everywhere positive functionals},
     journal = {Izvestiya. Mathematics },
     pages = {359--374},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a6/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - Nonselfintersecting closed extremals of multivalued or not everywhere positive functionals
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 359
EP  - 374
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a6/
LA  - en
ID  - IM2_1992_38_2_a6
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T Nonselfintersecting closed extremals of multivalued or not everywhere positive functionals
%J Izvestiya. Mathematics 
%D 1992
%P 359-374
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a6/
%G en
%F IM2_1992_38_2_a6
I. A. Taimanov. Nonselfintersecting closed extremals of multivalued or not everywhere positive functionals. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 359-374. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a6/