Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1992_38_2_a5, author = {P. I. Plotnikov}, title = {Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points}, journal = {Izvestiya. Mathematics }, pages = {333--357}, publisher = {mathdoc}, volume = {38}, number = {2}, year = {1992}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a5/} }
TY - JOUR AU - P. I. Plotnikov TI - Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points JO - Izvestiya. Mathematics PY - 1992 SP - 333 EP - 357 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a5/ LA - en ID - IM2_1992_38_2_a5 ER -
P. I. Plotnikov. Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 333-357. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a5/
[1] Lavrentev M. A., “K teorii dlinnykh voln”, DAN SSSR, 41:7 (1943), 275–277
[2] Friedrihs K. O., Hyers D. H., “The existence of solitary water waves”, Comm. Pure Appl. Math., 7 (1954), 517 | DOI | MR
[3] Beal J. T., “The existence of solitary water waves”, Comm. Pure Appl. Math., 30 (1977), 373–389 | DOI | MR | Zbl
[4] Amick C. J., Toland J. F., “On solitary water waves of finite amplitude”, Arch Hat. Mech. Anal., 76 (1981), 9–95 | MR | Zbl
[5] Craig W., Sternberg P., “Symmetry of solitary waves”, Comm. in partial differential equations, 13 (1988), 603–633 | DOI | MR | Zbl
[6] Lonquet-Higgins M. S., “Bifurcation in gravity waves”, J. Fluid. Mech., 151 (1985), 457 | DOI | MR
[7] Ovsyannikov L. V., “Parametry knoidalnykh voln”, Problemy matematiki i mekhaniki, Nauka, M., 1980
[8] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Fizmatgiz, M., 1956 | MR
[9] Bobylëv N. A., “O deformatsiyakh funktsionalov, imeyuschikh edinstvennuyu kriticheskuyu tochku”, Matem. zametki, 34:3 (1983), 387–398 | MR | Zbl
[10] Hansiorg Kielhoffer, “A bifurcation theorem for potential operator”, J. Functional Anal., 77 (1988), 1–8 | DOI
[11] Conley C., “Isolated invariant sets and the Morse index”, Conference Board Mathematical Sciences (No 38), Providence, 1978 | MR
[12] Smoller J., Shock waves and reaction diffusion equations, Springer-Verlag, New-York, Heidelberg, Berlin, 1983 | MR | Zbl
[13] Conley C., Zehnder E., “Morse-typo index theory for flows”, Comm. Pure Appl. Math., 37 (1984), 207–277 | DOI | MR
[14] Krasnoselskii M. A., Bobylëv N. A., Mukhamadiev E. M., “Ob odnoi skheme issledovaniya vyrozhdennykh ekstremalei funktsionalov klassicheskogo variatsionnogo ischisleniya”, DAN SSSR, 240:3 (1978) | MR
[15] Ladyzhenskaya O. A., Uraltseva P. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[16] Agmon S., Duglis A., Nirenberg L., Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh, Mir, M., 1962
[17] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR
[18] Rid M., Saimon S., Metody sovremennoi matematicheskoi fiziki, T. 4. Analiz operatorov, Mir, M., 1982 | MR
[19] Riss F., Sëkefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979
[20] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl
[21] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969 | MR
[22] Titchmarsh E. I., Razlozheniya no sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, T. 1, IL, M., 1960