Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points
Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 333-357

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of solitary waves on the surface of an ideal fluid is considered. By means of a variational principle it is shown that for an infinite set of values of the Froude number this problem has at least two geometrically distinct solutions. Sufficient conditions are formulated for the existence of bifurcations of degenerate critical points of one-parameter families of smooth functionals defined in a normed space.
@article{IM2_1992_38_2_a5,
     author = {P. I. Plotnikov},
     title = {Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points},
     journal = {Izvestiya. Mathematics },
     pages = {333--357},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a5/}
}
TY  - JOUR
AU  - P. I. Plotnikov
TI  - Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 333
EP  - 357
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a5/
LA  - en
ID  - IM2_1992_38_2_a5
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%T Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points
%J Izvestiya. Mathematics 
%D 1992
%P 333-357
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a5/
%G en
%F IM2_1992_38_2_a5
P. I. Plotnikov. Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 333-357. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a5/