On homology classes determined by real points of a real algebraic variety
Izvestiya. Mathematics, Tome 38 (1992) no. 2, pp. 277-297
Cet article a éte moissonné depuis la source Math-Net.Ru
For a nonsingular $n$-dimensional real projective algebraic variety $X$ the set $X(\mathbf R)$ of its real points is the union of connected components $X(\mathbf R)=X_1\cup\dots\cup X_m$. Those components give rise to homology classes $[X_1],\dots,[X_m]\in H_n(X(\mathbf C),\mathbf F_2)$. In this paper a bound on the number of relations between those homology classes is obtained.
@article{IM2_1992_38_2_a2,
author = {V. A. Krasnov},
title = {On~homology classes determined by real points of a real algebraic variety},
journal = {Izvestiya. Mathematics},
pages = {277--297},
year = {1992},
volume = {38},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a2/}
}
V. A. Krasnov. On homology classes determined by real points of a real algebraic variety. Izvestiya. Mathematics, Tome 38 (1992) no. 2, pp. 277-297. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a2/
[1] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR
[2] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl
[3] Kharlamov V. M., “Topologicheskie tipy neosobykh poverkhnostei stepeni 4 v $RP^3$”, Funkts. analiz i ego prilozh., 10:4 (1976), 55–68 | MR | Zbl
[4] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR | Zbl