On~homology classes determined by real points of a real algebraic variety
Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 277-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonsingular $n$-dimensional real projective algebraic variety $X$ the set $X(\mathbf R)$ of its real points is the union of connected components $X(\mathbf R)=X_1\cup\dots\cup X_m$. Those components give rise to homology classes $[X_1],\dots,[X_m]\in H_n(X(\mathbf C),\mathbf F_2)$. In this paper a bound on the number of relations between those homology classes is obtained.
@article{IM2_1992_38_2_a2,
     author = {V. A. Krasnov},
     title = {On~homology classes determined by real points of a real algebraic variety},
     journal = {Izvestiya. Mathematics },
     pages = {277--297},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a2/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On~homology classes determined by real points of a real algebraic variety
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 277
EP  - 297
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a2/
LA  - en
ID  - IM2_1992_38_2_a2
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On~homology classes determined by real points of a real algebraic variety
%J Izvestiya. Mathematics 
%D 1992
%P 277-297
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a2/
%G en
%F IM2_1992_38_2_a2
V. A. Krasnov. On~homology classes determined by real points of a real algebraic variety. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 277-297. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a2/

[1] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[2] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[3] Kharlamov V. M., “Topologicheskie tipy neosobykh poverkhnostei stepeni 4 v $RP^3$”, Funkts. analiz i ego prilozh., 10:4 (1976), 55–68 | MR | Zbl

[4] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR | Zbl