On birational automorphisms of rational surfaces
Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 251-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generators and relations of the groups of birational automorphisms are described for six classes of ($k$-minimal) rational surfaces. For surfaces $F$ with $\rho\colon=rk\operatorname{Pic}F=2$, $d\colon=K_F^2=3,4$ and $\rho=1$, $F(k)=\oslash$, $d=9$ relations between the already known generators are described, and for surfaces with $\rho=1$, $F(k)=\oslash$, $d=8,6$ and $\rho=2$, $F(k)=\oslash$, $d=8$ generators and relations are described.
@article{IM2_1992_38_2_a1,
     author = {V. A. Iskovskikh and S. L. Tregub},
     title = {On birational automorphisms of rational surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {251--275},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a1/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
AU  - S. L. Tregub
TI  - On birational automorphisms of rational surfaces
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 251
EP  - 275
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a1/
LA  - en
ID  - IM2_1992_38_2_a1
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%A S. L. Tregub
%T On birational automorphisms of rational surfaces
%J Izvestiya. Mathematics 
%D 1992
%P 251-275
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a1/
%G en
%F IM2_1992_38_2_a1
V. A. Iskovskikh; S. L. Tregub. On birational automorphisms of rational surfaces. Izvestiya. Mathematics , Tome 38 (1992) no. 2, pp. 251-275. http://geodesic.mathdoc.fr/item/IM2_1992_38_2_a1/

[1] Gizatullin M. X., “Opredelyayuschie sootnosheniya dlya kremonovoi gruppy ploskosti”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 909–970 | MR | Zbl

[2] Iskovskikh V. A., “Ratsionalnye poverkhnosti s puchkom ratsionalnykh krivykh”, Matem. sb., 74(116):4 (1967), 608–638 | Zbl

[3] Iskovskikh V. A., “Ratsionalnye poverkhnosti s puchkom ratsionalnykh krivykh i s polozhitelnym kvadratom kanonicheskogo klassa”, Matem. sb., 83(125):1 (1970), 90–119 | Zbl

[4] Iskovskikh V. A., “Biratsionalnye svoistva poverkhnosti stepeni 4 v $P^4$”, Matem. sb., 88(130):1 (1972), 31–37 | Zbl

[5] Iskovskikh V. A., “Minimalnye modeli ratsionalnykh poverkhnostei nad proizvolnymi polyami”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 19–43 | MR | Zbl

[6] Iskovskikh V. A., “Obrazuyuschie v dvumernoi gruppe Kremony nad sovershennym polem”, Issledovaniya po algebre, Tbilisi, 1984, 88–114

[7] Iskovskikh V. A., “Obrazuyuschie i sootnosheniya v gruppakh biratsionalnykh avtomorfizmov dvukh klassov ratsionalnykh poverkhnostei”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 165, 67–78 | MR | Zbl

[8] Kantor S., “Rationale Zerlegung der birationalen Transformationen in ihre Primfactoren”, Monatsh. Math. und Phys., 10:1 (1989), 54–74 | DOI | MR

[9] Manin Yu. I., “Ratsionalnye poverkhnosti nad sovershennymi polyami. II”, Matem. sb., 72(114):2 (1967), 161–192 | MR | Zbl

[10] Manin Yu. I., Kubicheskie formy, Nauka, M., 1972 | MR

[11] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math., 116 (1982), 133–176 | DOI | MR | Zbl

[12] Weinstein F. W., “On birational automorphisms of Severi–Brauer surfaces”, Rept. Dep. Math. Univ. Stockholm, 1989, no. 1, 1–14 | MR