On a generalization of Fermat's little theorem
Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 199-201
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a congruence type arithmetic relation on the set of all triples $(G,H,P)$, where $G$ is a finite group, $H$ is a subgroup, and $P$ is a representation of $G$ by permutations. This relation becomes Fermat's Little Theorem in the case when $G=Z_p$, $H=1$, and $P$ is the regular representation of $G$.
@article{IM2_1992_38_1_a8,
author = {S. P. Strunkov},
title = {On a generalization of {Fermat's} little theorem},
journal = {Izvestiya. Mathematics },
pages = {199--201},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a8/}
}
S. P. Strunkov. On a generalization of Fermat's little theorem. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 199-201. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a8/