On a generalization of Fermat's little theorem
Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 199-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a congruence type arithmetic relation on the set of all triples $(G,H,P)$, where $G$ is a finite group, $H$ is a subgroup, and $P$ is a representation of $G$ by permutations. This relation becomes Fermat's Little Theorem in the case when $G=Z_p$, $H=1$, and $P$ is the regular representation of $G$.
@article{IM2_1992_38_1_a8,
     author = {S. P. Strunkov},
     title = {On a generalization of {Fermat's} little theorem},
     journal = {Izvestiya. Mathematics },
     pages = {199--201},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a8/}
}
TY  - JOUR
AU  - S. P. Strunkov
TI  - On a generalization of Fermat's little theorem
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 199
EP  - 201
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a8/
LA  - en
ID  - IM2_1992_38_1_a8
ER  - 
%0 Journal Article
%A S. P. Strunkov
%T On a generalization of Fermat's little theorem
%J Izvestiya. Mathematics 
%D 1992
%P 199-201
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a8/
%G en
%F IM2_1992_38_1_a8
S. P. Strunkov. On a generalization of Fermat's little theorem. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 199-201. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a8/

[1] Strunkov S. P., “O kratnostyakh neprivodimykh komponent predstavlenii konechnykh grupp podstanovkami”, UMN, 40:1 (1985), 177–178 | MR | Zbl

[2] Kholl M., Kombinatorika, Mir, M., 1970 | MR