Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution
Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 69-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a method for checking completeness of families of functions which are in involution with respect to compatible Poisson brackets. Several examples of compatible Poisson brackets on duals of Lie algebras are considered, as well as the associated involutive function families and Hamiltonian systems. The transitions of Liouville tori for some nonintegrable Hamiltonian systems, notably the equations of motion for a higher dimensional rigid body, are described.
@article{IM2_1992_38_1_a2,
     author = {A. V. Bolsinov},
     title = {Compatible {Poisson} brackets on {Lie} algebras and completeness of families of functions in involution},
     journal = {Izvestiya. Mathematics },
     pages = {69--90},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a2/}
}
TY  - JOUR
AU  - A. V. Bolsinov
TI  - Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 69
EP  - 90
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a2/
LA  - en
ID  - IM2_1992_38_1_a2
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%T Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution
%J Izvestiya. Mathematics 
%D 1992
%P 69-90
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a2/
%G en
%F IM2_1992_38_1_a2
A. V. Bolsinov. Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 69-90. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a2/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[2] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR

[3] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz i ego prilozh., 10:4 (1976), 93–94 | MR | Zbl

[4] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl

[5] Trofimov V. V., Fomenko A. T., “Integriruemost po Liuvillyu gamiltonovykh sistem na algebrakh Li”, UMN, 39:2 (1984), 3–56 | MR | Zbl

[6] Bogoyavlenskii O. I., “Nekotorye integriruemye sluchai uravnenii Eilera”, DAN SSSR, 287:5 (1986), 1105–1109 | MR

[7] Olshanetskii M. A., Perelomov A. M., Reiman A. G., Semënov-Tyan-Shanskii M. A., “Integriruemye sistemy. II”, Sovremennye probl. matematiki. Fund. napravleniya, 16, VINITI, M., 1987, 86–226 | MR

[8] Brailov A. V., “Nekotorye sluchai polnoi integriruemosti uravnenii Eilera i prilozheniya”, DAN SSSR, 268:5 (1983), 1043–1046 | MR | Zbl

[9] Moser J., “Various aspects of integrable Hamiltonian systems”, Progr. in Math., 8 (1980), 233–289 | MR

[10] Adler M., Moerbeke P. van, “The algebraic integrability of geodesic flow on $SO(4)$”, Invent. Math., 67:2 (1982), 297–331 | DOI | MR | Zbl

[11] Ratiu T., “Euler–Poisson equation on Lie algebras and the $N$-dimensional heavy rigid bodi”, Amer. J. Math., 104:2 (1982), 409–448 | DOI | MR | Zbl

[12] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[13] Gelfand I. M., Dorfman I. Ya., “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz i ego prilozh., 13:4 (1979), 13–30 | MR

[14] Semënov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa”, Funkts. analiz i ego prilozh., 17:4 (1983), 17–33 | MR

[15] Reiman A. G., “Integriruemye sistemy, svyazannye s graduirovannymi algebrami Li”, Zap. nauch. semin, 95, LOMI, 1980, 3–54 | MR

[16] Mescheryakov M. V., “O kharakteristicheskom svoistve tenzora inertsii mnogomernogo tverdogo tela”, UMN, 38:5 (1983), 201–202 | MR | Zbl

[17] Pevtsova T. A., “Simplekticheskaya struktura orbit koprisoedinënnogo predstavleniya algebr Li tipa $E^+_{\rho}V$”, Matem. sb., 123:2 (1984), 276–286 | MR | Zbl

[18] Dao Chong Tkhi, “Integriruemost uravnenii Eilera na odnorodnykh simplekticheskikh mnogoobraziyakh”, Matem. sb., 106:2 (1981), 154–161

[19] Brailov A. V., “Postroenie vpolne integriruemykh geodezicheskikh potokov na kompaktnykh simmetricheskikh prostranstvakh”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 661–667 | MR

[20] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[21] Novikov S. P., Shmeltser I., “Periodicheskie resheniya uravnenii Kirkhgofa svobodnogo dvizheniya tvërdogo tela v idealnoi zhidkosti i rasshirennaya teoriya Lyusternika–Shnirelmana–Morsa (LShM). I”, Funkts. analiz i ego prilozh., 15:3 (1982), 54–66 | MR | Zbl

[22] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[23] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, DAN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[24] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl

[25] Perelomov A. M., “Neskolko zamechanii ob integrirovanii uravnenii dvizheniya tvërdogo tela v idealnoi zhidkosti”, Funkts. analiz i ego prilozh., 15:2 (1981), 83–85 | MR | Zbl

[26] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Sovremennye probl. matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 5–139

[27] Weinstein A., “The local structure of Poisson manifold”, J. Diff. Geom., 1983, no. 2, 523–557 | MR | Zbl

[28] Mischenko A.S., Fomenko A. T., “Obobschënnyi metod integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozh., 12:2 (1978), 46–56 | MR | Zbl

[29] Belyaev A. V., “O dvizhenii mnogomernogo tela s zakreplennoi tochkoi v pole sily tyazhesti”, Matem. sb., 114:3 (1981), 465–470 | MR | Zbl

[30] Bobenko A. I., “Uravneniya Eilera na $so(4)$ i $e(3)$. Izomorfizm integriruemykh sluchaev”, Funkts. analiz i ego prilozh., 20:1 (1986), 64–66 | MR | Zbl

[31] Brailov A. V., “Polnaya integriruemost nekotorykh geodezicheskikh potokov i integriruemye sistemy s nekommutiruyuschimi integralami”, DAN SSSR, 271:2 (1983), 273–276 | MR

[32] Brailov A. A., “Nekotorye konstruktsii polnykh semeistv funktsii, nakhodyaschikhsya v involyutsii”, Trudy semin. po vekt. i tenz. analizu, XXII, Izd-vo MGU, M., 1985, 17–24 | MR

[33] Bolsinov A. V., “Kriterii polnoty semeistva funktsii v involyutsii, postroennogo metodom sdviga argumenta”, DAN SSSR, 301:5 (1988), 1037–1040 | MR

[34] Oshemkov A. A., “Topologiya izoenergeticheskikh poverkhnostei i bifurkatsionnye diagrammy integriruemykh sluchaev dinamiki tvërdogo tela na $so(4)$”, UMN, 42:6 (1987), 199–200 | MR