Abelian subgroups of Galois groups
Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 27-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proves that every Abelian subgroup of rank $>1$ in the Galois group $G=\operatorname{Gal}(\overline K/K)$ of the algebraic closure of a rational function field $K$ is contained in a ramification subgroup, and also that the unramified Brauer group $\operatorname{Br}_vK$ equals the unramified Brauer group $\operatorname{Br}_v(G^c)$ defined in [2], §3, where $G^c$ is the quotient group $ G^c= G/[[G,G],G]$.
@article{IM2_1992_38_1_a1,
     author = {F. A. Bogomolov},
     title = {Abelian subgroups of {Galois} groups},
     journal = {Izvestiya. Mathematics },
     pages = {27--67},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a1/}
}
TY  - JOUR
AU  - F. A. Bogomolov
TI  - Abelian subgroups of Galois groups
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 27
EP  - 67
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a1/
LA  - en
ID  - IM2_1992_38_1_a1
ER  - 
%0 Journal Article
%A F. A. Bogomolov
%T Abelian subgroups of Galois groups
%J Izvestiya. Mathematics 
%D 1992
%P 27-67
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a1/
%G en
%F IM2_1992_38_1_a1
F. A. Bogomolov. Abelian subgroups of Galois groups. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 27-67. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a1/

[1] Bogomolov F. A., “Gruppa Brauera polei invariantov algebraicheskikh grupp”, Matem. sb., 180:2 (1989), 279–293 | MR | Zbl

[2] Bogomolov F. A., “Gruppa Brauera faktorprostranstv lineinykh predstavlenii”, Izv. AN SSSR. Ser. matem., 51:3 (1987), 485–516 | Zbl

[3] Merkurev A. S., Suslik A. A., “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1011–1061 | MR