Abelian subgroups of Galois groups
Izvestiya. Mathematics, Tome 38 (1992) no. 1, pp. 27-67
Cet article a éte moissonné depuis la source Math-Net.Ru
The author proves that every Abelian subgroup of rank $>1$ in the Galois group $G=\operatorname{Gal}(\overline K/K)$ of the algebraic closure of a rational function field $K$ is contained in a ramification subgroup, and also that the unramified Brauer group $\operatorname{Br}_vK$ equals the unramified Brauer group $\operatorname{Br}_v(G^c)$ defined in [2], §3, where $G^c$ is the quotient group $ G^c= G/[[G,G],G]$.
@article{IM2_1992_38_1_a1,
author = {F. A. Bogomolov},
title = {Abelian subgroups of {Galois} groups},
journal = {Izvestiya. Mathematics},
pages = {27--67},
year = {1992},
volume = {38},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a1/}
}
F. A. Bogomolov. Abelian subgroups of Galois groups. Izvestiya. Mathematics, Tome 38 (1992) no. 1, pp. 27-67. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a1/
[1] Bogomolov F. A., “Gruppa Brauera polei invariantov algebraicheskikh grupp”, Matem. sb., 180:2 (1989), 279–293 | MR | Zbl
[2] Bogomolov F. A., “Gruppa Brauera faktorprostranstv lineinykh predstavlenii”, Izv. AN SSSR. Ser. matem., 51:3 (1987), 485–516 | Zbl
[3] Merkurev A. S., Suslik A. A., “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1011–1061 | MR