The behaviour of the ndex of periodic points under iterations of a mapping
Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 1-26

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper strengthens a theorem due to A. Dold on the algebraic properties of sequences of integers which are Lefschetz numbers of the iterates of a continuous map from a finite polyhedron to itself. The realizability of sequences satisfying Dold's condition at a single fixed point of a continuous map on $\mathbf R^3$ is proved. Indices of a fixed point (under iteration) are investigated in the case of a smooth mapping. A linear lower bound on the number of periodic points of a smooth map, which strengthens a result of Shub and Sullivan, is obtained.
@article{IM2_1992_38_1_a0,
     author = {I. K. Babenko and S. A. Bogatyi},
     title = {The behaviour of the ndex of periodic points under iterations of a mapping},
     journal = {Izvestiya. Mathematics },
     pages = {1--26},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a0/}
}
TY  - JOUR
AU  - I. K. Babenko
AU  - S. A. Bogatyi
TI  - The behaviour of the ndex of periodic points under iterations of a mapping
JO  - Izvestiya. Mathematics 
PY  - 1992
SP  - 1
EP  - 26
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a0/
LA  - en
ID  - IM2_1992_38_1_a0
ER  - 
%0 Journal Article
%A I. K. Babenko
%A S. A. Bogatyi
%T The behaviour of the ndex of periodic points under iterations of a mapping
%J Izvestiya. Mathematics 
%D 1992
%P 1-26
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a0/
%G en
%F IM2_1992_38_1_a0
I. K. Babenko; S. A. Bogatyi. The behaviour of the ndex of periodic points under iterations of a mapping. Izvestiya. Mathematics , Tome 38 (1992) no. 1, pp. 1-26. http://geodesic.mathdoc.fr/item/IM2_1992_38_1_a0/