The identities of a group with nilpotent commutator subgroup are finitely based
Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 539-553.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the identities of a group with nilpotent commutator subgroup are finitely based. It follows that the identities of a connected matrix group over a field are finitely based.
@article{IM2_1991_37_3_a4,
     author = {A. N. Krasilnikov},
     title = {The identities of a group with nilpotent commutator subgroup are finitely based},
     journal = {Izvestiya. Mathematics },
     pages = {539--553},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a4/}
}
TY  - JOUR
AU  - A. N. Krasilnikov
TI  - The identities of a group with nilpotent commutator subgroup are finitely based
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 539
EP  - 553
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a4/
LA  - en
ID  - IM2_1991_37_3_a4
ER  - 
%0 Journal Article
%A A. N. Krasilnikov
%T The identities of a group with nilpotent commutator subgroup are finitely based
%J Izvestiya. Mathematics 
%D 1991
%P 539-553
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a4/
%G en
%F IM2_1991_37_3_a4
A. N. Krasilnikov. The identities of a group with nilpotent commutator subgroup are finitely based. Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 539-553. http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a4/

[1] Olshanskii A. Yu., “O probleme konechnogo bazisa tozhdestv v gruppakh”, Izv. AN SSSR. Ser. matem., 34:2 (1970), 376–384 | MR | Zbl

[2] Adyan S. I., “Beskonechnye neprivodimye sistemy gruppovykh tozhdestv”, DAN SSSR, 190 (1970), 499–501 | Zbl

[3] Vaughan-Lee M. R., “Uncountably many varieties of group”, Bull. London Math. Soc., 2 (1970), 280–286 | DOI | MR | Zbl

[4] Platonov V. P., “Lineinye gruppy s tozhdestvennymi sootnosheniyami”, DAN BSSR, 11:7 (1967), 581–582 | MR | Zbl

[5] Cohen D. E., “On the laws of the metabelian variety”, Algebra, 5:3 (1967), 267–273 | DOI | MR | Zbl

[6] Higman G., “Ordering by divisibility in abstract algebras”, Proc. London Math. Soc. (3), 2 (1952), 326–336 | DOI | MR | Zbl

[7] Vaughan-Lee M. R., “Abelian by nilpotent varieties”, Quart. J. Math. (2), 21 (1970), 193–202 | DOI | MR | Zbl

[8] McKay S., “On centre-by-metabelian varieties of groups”, Proc. London Math. Soc. (3), 24 (1972), 243–256 | DOI | MR | Zbl

[9] Bryant R. M., Newman M. F., “Some finitely based varieties of groups”, Proc. London Math. Soc. (3), 28 (1974), 237–252 | DOI | MR | Zbl

[10] Krasilnikov A. N., Shmelkin A. L., “O shlekhtovosti i bazisnom range nekotorykh proizvedenii mnogoobrazii grupp”, Algebra i logika, 20 (1981), 546–554 | MR

[11] Bakhturin Yu. A., Olshanskii A. Yu., “Tozhdestva”, Sovr. problemy matematiki. Fundamentalnye napravleniya, 18, VINITI, M., 1987, 117–240

[12] Plotkin B. I., “Mnogoobraziya predstavlenii grupp”, UMN, 32:5 (1977), 3–68 | MR | Zbl

[13] Plotkin B. I., “Mnogoobraziya v predstavleniyakh konechnykh grupp. Lokalno stabilnye mnogoobraziya. Matrichnye gruppy i mnogoobraziya predstavlenii”, UMN, 34:4 (1979), 65–95 | MR | Zbl

[14] Krasil'nikov A. N., Smel'kin A. L., “On the laws of finite dimensional representations of solvable Lie algebras and groups”, Lecture Notes in Math., 1352, Springer-Verlag, Heidelberg, 1988, 114–130 | MR

[15] Vovsi S. M., “Odnorodnye mnogoobraziya predstavlenii grupp”, Sib. matem. zhurn., 29:3 (1988), 35–47 | MR

[16] Latyshev V. N., “Chastichno uporyadochennye mnozhestva i nematrichnye tozhdestva assotsiativnykh algebr”, Algebra i logika, 15 (1976), 53–70 | Zbl

[17] Genov G. K., “O shpekhtovosti nekotorykh mnogoobrazii assotsiativnykh algebr nad polem kharakteristiki $0$”, Dokl. Bolg. AN., 29 (1976), 939–941 | MR | Zbl

[18] Popov A. P., “Some finitely based varieties of rings”, Dokl. Bolg. AN., 32 (1979), 855–858 | MR | Zbl

[19] Chiripov P. Zh., Siderov P. Zh., “O bazisakh tozhdestv nekotorykh mnogoobrazii assotsiativnykh algebr”, Pliska, 2 (1981), 103–115 | MR | Zbl

[20] Neiman X., Mnogoobraziya grupp, Mir, M., 1969 | MR