Etale topologies of schemes over fields of finite type over $\mathbf Q$
Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 511-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proves a conjecture of Grothendieck concerning the possibility of recovering a normal scheme over a field of finite type over $\mathbf Q$ from its etale site.
@article{IM2_1991_37_3_a2,
     author = {V. A. Voevodskii},
     title = {Etale topologies of schemes over fields of finite type over $\mathbf Q$},
     journal = {Izvestiya. Mathematics },
     pages = {511--523},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a2/}
}
TY  - JOUR
AU  - V. A. Voevodskii
TI  - Etale topologies of schemes over fields of finite type over $\mathbf Q$
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 511
EP  - 523
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a2/
LA  - en
ID  - IM2_1991_37_3_a2
ER  - 
%0 Journal Article
%A V. A. Voevodskii
%T Etale topologies of schemes over fields of finite type over $\mathbf Q$
%J Izvestiya. Mathematics 
%D 1991
%P 511-523
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a2/
%G en
%F IM2_1991_37_3_a2
V. A. Voevodskii. Etale topologies of schemes over fields of finite type over $\mathbf Q$. Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 511-523. http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a2/

[1] Mamford D., “Problemy modulei i ikh gruppy Pikara”, Matematika, 13:2 (1969), 26–63

[2] Grothendieck A. et al., Theorie des Topos (SGA4), Lectures Notes in Math., 269, 270, 305, Springer-Verlag, Heidelberg

[3] Artin M., Grothendieck topologies, Harvard. Math. Dept. Lecture Notes, 1962

[4] Miln Dzh., Etalnye topologii, Mir, M., 1983 | MR | Zbl

[5] Grothendieck A. et al., Revements etales (SGA1), Lecture Notes in Math., 224, Springer-Verlag, Heidelberg, 1971 | MR | Zbl