Etale topologies of schemes over fields of finite type over $\mathbf Q$
Izvestiya. Mathematics, Tome 37 (1991) no. 3, pp. 511-523
Cet article a éte moissonné depuis la source Math-Net.Ru
The author proves a conjecture of Grothendieck concerning the possibility of recovering a normal scheme over a field of finite type over $\mathbf Q$ from its etale site.
@article{IM2_1991_37_3_a2,
author = {V. A. Voevodskii},
title = {Etale topologies of schemes over fields of finite type over $\mathbf Q$},
journal = {Izvestiya. Mathematics},
pages = {511--523},
year = {1991},
volume = {37},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a2/}
}
V. A. Voevodskii. Etale topologies of schemes over fields of finite type over $\mathbf Q$. Izvestiya. Mathematics, Tome 37 (1991) no. 3, pp. 511-523. http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a2/
[1] Mamford D., “Problemy modulei i ikh gruppy Pikara”, Matematika, 13:2 (1969), 26–63
[2] Grothendieck A. et al., Theorie des Topos (SGA4), Lectures Notes in Math., 269, 270, 305, Springer-Verlag, Heidelberg
[3] Artin M., Grothendieck topologies, Harvard. Math. Dept. Lecture Notes, 1962
[4] Miln Dzh., Etalnye topologii, Mir, M., 1983 | MR | Zbl
[5] Grothendieck A. et al., Revements etales (SGA1), Lecture Notes in Math., 224, Springer-Verlag, Heidelberg, 1971 | MR | Zbl