Holomorphic extension of CR-functions with singularities on a~hypersurface
Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 681-691

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be a Stein manifold of dimension $n\geqslant 2$, let $G$ be a domain which is relatively compact in $\Omega$ with $\Omega\setminus\overline G$ connected, and let $K\subset\overline G$ with $K=\widehat K_\Omega$. It is shown that any CR-function $f$ which is defined on $\Gamma=\partial G\setminus K$ extends holomorphically to $G\setminus K$. A local version of this assertion is also obtained.
@article{IM2_1991_37_3_a10,
     author = {A. M. Kytmanov},
     title = {Holomorphic extension of {CR-functions} with singularities on a~hypersurface},
     journal = {Izvestiya. Mathematics },
     pages = {681--691},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a10/}
}
TY  - JOUR
AU  - A. M. Kytmanov
TI  - Holomorphic extension of CR-functions with singularities on a~hypersurface
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 681
EP  - 691
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a10/
LA  - en
ID  - IM2_1991_37_3_a10
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%T Holomorphic extension of CR-functions with singularities on a~hypersurface
%J Izvestiya. Mathematics 
%D 1991
%P 681-691
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a10/
%G en
%F IM2_1991_37_3_a10
A. M. Kytmanov. Holomorphic extension of CR-functions with singularities on a~hypersurface. Izvestiya. Mathematics , Tome 37 (1991) no. 3, pp. 681-691. http://geodesic.mathdoc.fr/item/IM2_1991_37_3_a10/